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ABSTRACT 

 

Ovarian cancer, one of the most dreadful malignancies of the female reproductive system, 

poses a lethal threat to women worldwide. In this dissertation, the objective was to introduce a 

novel type of graphene quantum dots (GQDs) based nano-sized drug delivery systems (DDS) for 

ovarian cancer treatment. As a starting point, the facile synthesis method of the GQDs was 

established. Subsequently, the targeting ligand,folic acid (FA), was conjugated to GQDs. Next, a 

FDA approved chemotherapeutic drug, Doxorubicin (DOX), was loaded to form the 

GQDs-FA-DOX nano-conjugation as the DDS. Moreover, the uptake profile and anti-cancer 

effect of the GQDs-FA-DOX were validated in ovarian cancer cells. Finally, the immunotoxicity 

of GQDs and its mechanism were investigated and elucidated.  Taken together, the findings 

described in this dissertation provide a novel and powerful strategy of targeted treatment for 

ovarian cancer.  
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CHAPTER 1: INTRODUCTION 

1.1 Ovarian Cancer 

Ovaries are the main female reproductive glands, two oval-shaped organs located at the 

upper left and right of the uterus. They play a critical role in regulating female reproductive 

system, secreting the hormones estrogen and progesterone, and producing egg cells. Ovarian 

cancer begins in the ovaries and ranks fifth in cancer death among women according to the latest 

statistics from the American Cancer Society[1, 2]. In 2015, approximately 21,290 women in the 

United States were diagnosed with ovarian cancer and approximately 14,180 would die from 

it[3-5]. Although ovarian cancer only accounts for 3% of cancers in female, it actually causes in 

more deaths than any other cancer. Ovarian cancer is also known as a silent killer since it is often 

unable to be detected until it metastasizes within the pelvis and abdomen. Staging refers to the 

process of finding out how widespread a cancer is. It is of great significance because ovarian 

cancers have different prognoses and treatment strategies at different stages (Table 1. 1). 

Stage I: Cancer is only found in one or both ovaries.  

Stage II: Cancer is present in one or both ovaries and has developed to other parts within the 

pelvis. 

Stage III: The cancer is discovered in one or both ovaries, and has developed outside 

the pelvis to other parts of the abdomen and/or to nearby lymph nodes. 
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Stage IV: This is the most advanced stage. Cancer has spread to other organs or tissues 

beyond the abdomen. 

 
Table 1. 1 A description of the International Federation of Gynecology and Obstetrics staging 
system for the diagnosis of ovarian cancer. 
 Stage Description 

Early stages 
I Cancer growth is confined to the ovaries. 
II Cancer growth is confined to the pelvic region. 

Late stages 
III 

Metastasis to the organs and the peritoneal cavity and/or 
regional lymph nodes.  

IV Distant metastasis beyond the peritoneal cavity 

 

Early-stage ovarian cancer rarely causes signs or symptoms. Patients are more likely to have 

symptoms if the disease has metastasis to organs beyond the ovaries. The most common signs or 

symptoms may include: abdominal bloating or swelling, trouble eating or feeling full fast, 

discomfort in the pelvis area, urinary symptoms such as urgency or frequency, and weight loss[6]. 

Once diagnosed, it is more difficult to treat and is frequently fatal in its advanced stage. When it 

is found at its early stage, it is more likely to be treated successfully. Near 80% of ovarian cancer 

patients were diagnosed with stage III-IV diseases[7, 8]. The mainstay of treating ovarian cancer 

is surgery followed by chemotherapy, which works for early stage ovarian cancer patients. 

However, for 70% of advanced stages patients, relapse will occur within 18  

months [8, 9]. 



www.manaraa.com

 3 

1.2 Current Therapies for Ovarian Cancer 

Different treatment options are available for patients who are diagnosed with ovarian cancer. 

At present, the most common treatment strategies for ovarian cancer include radiation therapy[10, 

11],chemotherapy[10, 12-14],surgery[15, 16],and targeted therapy[17-19]. Other treatment 

options available or being tested in clinical trials may include hormone therapy[20, 21]and 

biologic therapy[22, 23]. As a matter of fact, treatment of ovarian cancer usually involves a 

combination of two or more options mentioned above. 

1.2.1 Surgery 

Generally, doctors will give most patients an operation to remove the tumor as much as 

possible. The types of surgery depend on how far the tumor has spread. They may involve the 

removal of one or both ovaries, fallopian tubes, the uterus, the lymph nodes, and fatty tissue in 

abdomen where tumors often develop[24].  

1.2.2 Chemotherapy 

After surgery, patients are usually required to be treated with chemotherapy, using drugs to 

kill remaining tumor cells or to keep them from dividing[25]. The drugs can be either given 

orally or injected into muscle or a vein, most of the time determined by the type and stage of 

cancer being treated. Chemotherapy is a systemic treatment in most cases, so the drugs will enter 

the bloodstream and are likely to be distributed among the entire body. The following is a list of 

common anticancer drugs approved for ovarian cancer by the Food and Drug Administration 
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(FDA): Cisplatin, Carboplatin, Altretamine, Paclitaxel, Topotecan, Liposomal doxorubicin, and 

Combination gemcitabine–carboplatin[26]. 

However, chemotherapy drugs simultaneously can cause a number of unwanted side effects. 

They are also deleterious to normal cells while killing cancer cells[27]. Some common 

temporary side effects of chemotherapy drugs may include: loss of hair, loss of appetite, nausea 

and vomiting, mouth sores, and rashes on skins [28-30]. 

Most of the above symptoms are able to gradually fade away when stop taking 

chemotherapy drugs. But some of the drugs are likely to cause long-term or even permanent 

damages to bone marrow[31]or kidney[32]. 

1.2.3 Radiation Therapy 

Radiation therapy is a type of treatment employing radiations, such as high-energy x-rays, to 

kill tumor cells. There are several means of radiation therapy, such as internal radiation 

therapy[33],external radiation therapy[34], and radioactive phosphorus[35]. Basically, the 

radiation therapy adopted depends on the stages of the cancer. 

External radiation therapy utilizes an instrument outside the body to generate radiation to kill 

cancer cells. This is the most commonly used radiation therapy for ovarian cancer. The radiation 

beam, like X-ray, passes through patients’ skin and tissue and then is focused on the cancer. 

Patients are actually exposed to the radiation for a short time, and the radiation can be precisely 

positioned and accurately aimed at the tumor cells. Internal radiation therapy uses a radioactive 
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substance in needles, catheters, seeds, or wires which are directly sent into or near the tumor[36]. 

It is relatively less adopted for ovarian cancer treatment. It should be noted that there are some 

side effects associated with radiation therapy, including fatigue, diarrhea, skin changes, nausea, 

and vomiting. 

Radioactive phosphorus is a treatment that instills the solution of radioactive phosphorus 

into the abdomen[37]. The radioactive phosphorus solution flows into the cells lining the surface 

of the abdomen and kills them. It was once used in the past, but it is not considered as a standard 

treatment for ovarian cancer anymore. Although it incurs few instant side effects, it leads to 

intestine injury and digestive problems, including bowel obstruction[38, 39]. 

1.2.4 Targeted Therapy 

A comparatively new and promising type of treatment called targeted therapy has been paid 

more and more attention lately. In this procedure, drugs or substances have the ability to identify 

and kill specific cancer cells, e.g. ovarian cancer cells, without or with extremely little damage to 

normal cells.    

Monoclonal antibody therapy[40]is a well-known targeted therapy by means of the 

antibodies developed from immune system cell in the laboratory. Such antibodies direct attach to 

certain receptors on cancer cells, and mark cancer cells to be recognized by immune system. 

Monoclonal antibodies can work alone or in combination with the toxins, drugs, or radioactive 

substances to attack tumor cells[41]. 
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Bevacizumab[42] is a monoclonal antibody, also known as an angiogenesis inhibitor, that 

has been demonstrated to shrink and decelerate the growth of advanced epithelial ovarian 

cancers. This drug binds to vascular endothelial growth factor (VEGF) that signals new blood 

vessels to form[43]. This can minimize the growth of cancer cells. Bevacizumab also leads to 

side effects including high blood pressure, low white blood cell counts, mouth sores or even 

serious problems as, for example, blood clots [42]. 

Olaparib[44]is an orally active poly(ADP-ribose) polymerase (PARP) inhibitors. PARP 

enzymes usually take part in DNA repair pathways. Olaparib can effectively thwart the repair of 

DNA and lead cancer cells to death[45]. It is normally given by mouth, and its side effects are 

relatively mild, which may include nausea, fatigue and diarrhea.   

1.2.5 Hormone Therapy 

The utilization of hormones or hormone-blocking drug to treat cancer is called hormone 

therapy. Tamoxifen[46], luteinizing-hormone-releasing hormone (LHRH) agonists[47], and 

aromatase inhibitors[48] are some examples of anticancer drugs associated with hormone 

therapy. 

1.2.6 Biologic Therapy 

New types of treatments are still being developed to fight and conquer ovarian cancer, and 

some of them are being evaluated in clinical trials. Biologic therapy, also known as biotherapy or 

immunotherapy, is a treatment that makes use of the patients’ immune system to attack 
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cancer[49]. Substances, such as growth factors, cytokines, and, cellular adhesion molecules, 

produced by the human body or designed and synthesized in the laboratory are employed to 

improve, guide, and/or restore the body’s immune system and natural defenses against 

diseases[50]. 

1.3 Drug Delivery Strategies of Ovarian Cancer Treatment 

    Drug delivery systems (DDS) for ovarian cancer treatment are being developed in an 

attempt to attain higher drug concentrations at the location of cancer cells. In contrast to current 

standard treatment, i.e. surgery and systemic chemotherapy, DDS present a couple of new merits 

which may overcome the limitations facing current standard treatment. For instance, DDS have 

exhibited promise in avoiding the emergence of multidrug resistance, improving drug solubility, 

increasing drug concentrations in targeted tumor sites, minimizing toxicities and eventual disease 

relapse associated with conventional systemic chemotherapy drugs[51]. Fortunately, more and 

more drugs based on DDS are being tested in clinical trials for the treatment of ovarian cancer, 

and some of them even are available as a second-line therapy (Table 1.2).  

A summary of recent advances in DDS strategies for the treatment of ovarian cancer is given 

below. The DDS can be categorized into nano-sized systems, including nanoparticles, micelles, 

liposomes, and drug conjugates; microspheres; implants and injectable depots. The advantages, 

disadvantages, as well as clinical potential of the above strategies are also briefly introduced in 

Table 1.3. 
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Table 1.2  DDS that have entered clinical trials for ovarian cancer treatment. Reprinted with 
permission [51]. 

Name Delivery System Compound Clinical Stage 
DOXIL Liposome Doxorubicin Approved 
OPAXIO Drug conjugate Paclitaxel Phase III 
CT-2106 Drug conjugate Camptothecin Phase II 
Genexol-PM Block polymer micelle Paclitaxel Phase II (recruiting) 
Paclimer Microsphere Paclitaxel Failed in Phase I 

 

 

 

Table 1.3 Advantages and limitations of DDS investigated for ovarian cancer therapy. Reprinted 
with permission [51]. 
System Advantages Limitations 
Nano-sized 
systems 

Passive targeting due to size, Active 
targeting,  
Ease of administration.  

Small size may lead to rapid 
clearance and limited half-life, 
Frequent dosing required,  
May not be applicable for residual 
disease following cytoreductive 
surgery 

Microspheres Prolonged release profile, Several 
formulations have reached the market 
for other cancers 

Peritoneal adhesions, Limited 
tumor penetration 

Implants and 
injectable depots 

Localized delivery, Sustained drug 
release, Lower systemic toxicity, 
Facilitates delivery of drugs with 
short half-life, Increased 
bioavailability by decreasing 
first-pass hepatic metabolism, 
Enhanced effect for cell cycle-specific 
drugs, Reduced dose dumping 

Invasive, Surgical expertise 
needed for implantation and 
removal, Limited tumor 
penetration, Viscosity issues if 
injectable 
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1.3.1 Multidrug Resistance (MDR) 

MDR refers to a phenomenon by which the cancer cells achieve the survival ability even if 

structurally and functionally different anticancer drugs are given[52]. The development of MDR 

can result in the chemotherapy failure in ovarian cancer. The appearance of MDR may relate to 

the following reasons: i) cancer cell genetics and phenotype; ii) tumor microenvironment and iii) 

inadequate drug exposure[51]. As mentioned above, The MDR issue may be circumvented by 

means of DDS strategy. 

1.3.2 Nano-sized DDS: Nanoparticles, Block Copolymer Micelles, Liposomes and Drug 

Conjugates 

Considerable nano-sized DDS such as nanoparticles[53-61], block copolymer 

micelles[62-69], liposomes[70-73] and drugs conjugates to peptides[74, 75], small molecules[76] 

or polymers[77-85] have been designed and studied for the purpose of ovarian cancer treatment. 

In fact, they can be perceived as a nano-scale (at least one dimension less than 100 nm) platform 

for drug loading. At such nano scale, they will possess new features in chemical, physical and 

biological aspects. After systemic administration, nano-sized DDS can actively accumulate at 

tumor sites through passive targeting due to the enhanced permeation and retention (EPR) 

effect[86-88]. The circulation lifetime following intravenous administration can be significantly 

prolonged in contrast to free drugs. Thus, the EPR effect of DDS can lead to the enhancement of 

therapeutic efficacy. Nano-sized DDS enables the MDR vastly minimized by directing 
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endocytosis-mediated cellular internalization of drugs and/or interacting directly with efflux 

pumps[89-91]. To further enhance the therapeutic efficacy of drug-loaded nano-sized DDS, 

moieties which can be recognized by cancer cells have also been introduced onto the surface of 

DDS, realizing active targeting effect. Active targeting is also conducive to bypassing MDR, 

leading to an increased accumulation of drugs[92]. However, nano-sized DDS cannot remarkably 

prolong the peritoneal residence time of the drugs. Nano-sized DDS quickly pass through the 

peritoneal cavity into the lymphatic drainage[93-95].  

1.3.3 Microspheres 

The size of microsphere DDS normally ranges from 1 to 1000 µm. Compared with 

nano-sized DDS, microspheres present a longer peritoneal retention time following 

intraperitoneal administration[95]. However, it is still faced with the challenge of 

biocompatibility. So far, there are only limited preclinical tests undertaken on microsphere 

formulations for intraperitoneal chemotherapy for ovarian cancer treatment[95-97].  

1.3.4 Implants and Injectable Depots 

For the sake of localized and persistent anticancer drug delivery, implants and injectable 

depots DDS may provide a promising alternative. Their advantages are expected to be 

accumulated drug concentration at the tumor site, sustained drug release benefiting for cell 

cycle-specific anticancer agents, and low systemic toxicity[51]. On the other hands, there are still 

some concerns and issues impeding their application clinically. One concern is associated with 
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the realization of homogeneous distribution of drug in the peritoneal cavity after administration. 

Moreover, metastatic regions beyond the peritoneal cavity are likely to be scarcely benefited 

based on such localized approach. 

1.3.5 Folate Receptor (FR) Targeted Ovarian Cancer Therapy 

Folic acid (FA), a water-soluble B9 vitamin, plays an important role in various cell functions 

such as DNA synthesis, repair, and methylation. Three types of proteins involved in the FA 

transport have been described: folate receptor, proton-coupled folate transporter, and reduced 

folate carrier. FR is known to be overexpressed in ovarian cancers, while present limitedly in 

normal tissues, making it a promising anti-tumor target [98-100]. Several studies has approved 

the FA-conjugated drug or/and gene delivery achieved a desired anti-cancer effect in ovarian 

cancer [101-105]. 

1.4 Graphene Quantum Dots (GQDs) 

1.4.1 Graphene and Its Derivatives 

Graphene is a type of single layer two-dimensional nanomaterial featured with sp2 

hybridized carbon atoms arranged in a honeycomb lattice[106-110]. Graphene is becoming a 

increasing recognized by the scientific community owing to its considerable unique properties in 

physical and chemical aspects. Specifically, these unique properties include high surface area, 

strong mechanical strength, extremely low toxicity and ease of functionalization, just to name a 
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few. The derivatives of graphene, e.g. graphene oxide (GO)[111-114] and GQDs [115-118] 

inherits the majority of the superior properties of graphene, and they have been broadly 

investigated for a diversity of applications. In particular, scientists and researchers are spending 

more and more efforts regarding their biological applications, including, for example, 

bioimaging[119-121], drug delivery[122-126], and photothermal therapy. It has been reported 

that GO is a promising platform for drug loading, as molecules can be attached to it through 

physical adsorption[114, 122] or chemical binding[127, 128]. For those molecules containing 

aromatic structures, they can readily attach to graphene and its derivatives via strong π-π 

stacking interaction[129]. On the other hand, with the presence of –COOH[123] and other 

functional groups on the surface GO and GQDs, numerous molecules can be linked to GO via 

chemical bonds. According to the literature, GO and GQDs show very high water-solubility[130, 

131], which enables to deliver a number of water-insoluble drugs into cells. Moreover, in 

contrast to single-walled carbon nanotubes, which load drugs mainly through outer face and tips, 

GO and GQDs permit drugs to be loaded on both faces and edges. Thus, the loading ratio of GO 

and GQDs present remarkably high loading capacity, theoretically even up to 200%[132]. 

1.4.2 GQDs 

Visualization of living cells, namely bioimaging technique, is of great importance for 

diagnostic purpose or understanding cellular uptake mechanisms. Consequently, DDS is 

expected to be visually tracked in order to achieve the goals mentioned above. Indeed, several 
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types of luminescent materials have been under investigations in recent years, such as organic 

dyes[133-135], semiconductor quantum dots[136-138], and lanthanide-doped 

nanocrystals[139-141]. However, organic dyes suffer from unwanted photobleaching; 

semiconductor quantum dots are challenged with toxicity; and lanthanide-doped nanocrystals is 

confined with their high cost. In addition, it needs to be pointed out that the high loading 

capacity platform discussed above, i.e. graphene or GO, can lead to severe luminescence 

quenching when conjugating with most of the preceding luminescent materials[142-145]. 

Therefore, it is desirable to develop a DDS with intrinsic luminescent properties, which also 

possesses the merits of graphene or GO. Such DDS can undertake imaging and implement drug 

delivery tasks without the need for external organic dyes, or semiconductor quantum dots. 

Fortunately, GQDs not only inherit the merits from graphene and GO, but also possess intrinsic 

photoluminescence, and thus affording a possible and promising solution for the challenge we 

are faced with. In this dissertation, I employed functionalized GQDs as a novel nano-scale drug 

delivery vehicle with tunable luminescence for ovarian cancer treatment. 

1.4.3 The Chemical Structure of GQDs 

The chemical structure of GQDs resembles the crystalline structure of single or a few 

layered graphene, typically with oxygen-containing groups such as -COOH, -OH presenting on 

their surfaces or edges (Figure 1.1) [146]. Their lateral dimension is normally reported a few 

nanometers though there are reports on their size as large as 60 nm[117]. Their shape is mainly 
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either circular or elliptical, but the findings of triangular, quadrate and hexagonal GQDs are also 

reported in several articles[147]. 

 
Figure 1.1 Schematic illustration of the structures of GQDs. Reproduced with permission[148]. 

 

According to results in the literature, the graphitic in-plane lattice spacing is usually 

0.18~0.24 nm[149], while the graphitic inter-layer spacing is approximately 0.334 nm or even 

greater when considering the existence of functional groups[131, 150]. The physical and 

chemical properties of GQDs are highly associated with their structures, which will be 

introduced below.  

1.4.4 Optical Properties 

1.4.4.1 Absorbance 

GQDs have a strong absorbance towards the short-wavelength region of the ultraviolet 

(UV)-visible spectrum owing to the π -π* transition of C=C bonds. Typically, an obvious 

absorption band can be measured in the UV region (260-320 nm), with a tail covering the visible 
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region[151, 152]. A shoulder peak located between 270 and 390 nm usually can be observed, 

which is ascribed to the n-π* transition of C=O bonds[153]. The absorption behavior can be 

affected by functional groups and surface passivation., which normally involves a creation of 

protective layer on the surface, making the base material less affected by surrounding 

environment [101]. 

1.4.4.2 Photoluminescence 

The photoluminescence characteristics of GQDs are fascinating, as their emission colors are 

tunable by altering their particle sizes and functional groups, or using different excitation 

wavelengths, and they also exhibit upconversion photoluminescence. The upconversion refers to 

a nonlinear process in which the successive absorption of two or more photons with low energy 

followed the emission of a photon with high energy [102]. Compared with commonly used 

organic dyes, the strength of GQDs includes excellent non-photobleaching performance. In 

contrast to semiconductor quantum dots, the advantage of GQDs lies in non-photobleaching . 

GQDs with different emission colors ranging from UV to red, and most commonly blue and 

green, have been successfully fabricated in the laboratory. Thus, GQDs are also good candidate 

for multi-color imaging. 

Similar to semiconductor quantum dots, the luminescence of GQDs also show 

size-dependent characteristics[154]. The presented GQDs emit luminescence from far-UV to 

near-infrared (NIR) with their size varying from 0.5 nm to 2.4 nm. Basically, the smallest GQD 
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emits at 235.2 nm, while the largest GQD emits at 999.5 nm. The size-dependent relationship is 

why the emission wavelength of GQDs covers the entire visible spectrum (400-780nm) as the 

size changes from 0.9 nm to 1.8 nm. It should be noted that as the particle size increases, the 

observed red-shift of the emission wavelength is attributed to the decline in band gap resulting 

from p-electron delocalization[154].  

The existence of oxygen-containing functional groups also has impact on the luminescence 

properties of GQDs[154]. The oxidation of GQDs by –OH or –COOH results in red-shift 

phenomenon presumably due to the band gap reduction in a coverage dependent manner. 

Increasing –OH to their edge (from 0 to 100% coverage) alters GQDs from green (572nm) to red 

(732nm). The case of red-shift manner of edged –COOH groups exhibits the similar trend as that 

of –OH. In contrast to the edged situation, -OH groups attached on the basal plane render a more 

drastic red-shift probably due to the disruption of the graphitic carbon lattice. GQDs from the 

top-down strategy more often bear defects. The relevant calculations depict that the appearance 

of single or double vacancy defects also remarkably affected the emission wavelength. So the 

results indicate that the impact of vacancy defects cannot be neglected. 

Interestingly, the photoluminescence of GQDs also present an excitation-dependent 

phenomenon[121, 155]. The emission peaks redshift with longer excitation wavelengths, while 

the emission intensity decreases, with the strongest excitation peak at the absorption band. 

Upconversion refers to a nonlinear optical process, in which the energy of the emission 

photon is higher than that of excitation photons (namely the emission wavelength is shorter than 
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the excitation wavelength), because of two or more consecutive photons at one time[156]. It has 

been reported that GQDs also exhibit comparatively higher upconversion efficiency compared to 

the traditional phosphors. Upconversion is desirable for in vivo imaging in that a longer 

excitation wavelength permits a deeper tissue penetration[157]. From the work by Chen et 

al.(Chen, Shen et al. 2012, we can observe that GQDs emit upconverted luminescence centered 

roughly at 450~475 nm with the excitation wavelength varying from 600 to 800 nm [157]. The 

upconverted ability of GQDs makes them more attractive for bioimaging, especially for deep 

tissue imaging. 

1.4.4.3 Photoluminescence Mechanisms 

To date, the luminescence mechanisms of GQDs are still not completely understood. The 

widely accepted luminescence mechanism at present is described as a transition from the lowest 

unoccupied molecular orbital (LUMO) to the highest occupied molecular orbital (HOMO) [147, 

158, 159], as illustrated in Figure 1.2. The energy gap relies on the GQDs, which is determined 

by several parameters and the key factor is particle size. Generally, the energy decreases 

gradually as the size of GQDs expand. Figure 1.2(a) (I) & (ii) reveals the LUMO state and 

HOMO state of a GQD (C96H58) from ground state, while Figure 1.2 (c) further depicts the GQD 

(C96H58) consisting of 4 sp2 domains (pyrene) separated by a sp3 carbon network. To understand 

the upconversion mechanism of GQDs, the classic energy level structural model is employed and 

proposed (Figure 1.2 (a) (iii) & (iv)). In brief, a photon with low energy excites π-electrons (at 
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intermediate energy level) to LUMO, followed by a relaxation into σ orbital (HOMO) emitting a 

higher energy photon[147].  

 
Figure 1.2. luminescence mechanisms of GQDs. (a) A schematic illustration of various typical 
electronic transitions processes of GQDs. Normal photoluminescence mechanisms in GQDs for 
small size (i) and large size (ii); Upconverted PL mechanisms in GQDs for large size (iii) and 
small size (iv). (b) Molecular orbitals for LUMO and HOMO from ground state. (c) GQD 
composed of four pyrene domains separated by sp3 carbons (green spheres). Reproduced with 
permission[160, 161] . 

1.4.5 Cytotoxicity 

Due to the potential applications of GQDs in biology, evaluation of their toxicity has been 

given lot of attention. A number of research groups have performed cytotoxicity tests, which 

confirm their low toxicity in the majority cell types.[162-164] For example, Zhu et al. [121] 

measured cell viability of human osteosarcoma MG-63 cells using 

methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. According to their results, the cell 

viability remained above 80% when 400 µg of GQDs were added to 150 mL culture medium 

(104 cells), indicating the minimum cytotoxicity of GQDs and the feasibility for biological 

applications. Zhang et al. [131] have conducted MTT assays on three kinds of stem cells: 
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Neurospheres cells, cardiac progenitor cells, and pancreas progenitor cells. Average cell viability 

for those cells were over 80% after 3 days culturing with GQDs at the concentration of 100 

mg/mL. Furthermore, other types of cells have been evaluated, including mouse osteoblast 

precursor MC3T3 cells[165], human cervical cancer HeLa cells[166], and human breast cancer 

cells MCF-7 cells[166], MDA-MB-231[167], and T47D[168]. As expected, all of the results 

show that GQDs pose low toxic effects and are suitable for a diversity of biological applications.   

1.4.6 Biological Applications 

As introduced above, GQDs have considerable advantages over the conventional organic 

dyes and semiconductors, making them more desirable for cell or tissue imaging. For instance, 

Zhu et al.[121], have applied the green fluorescent GQDs for cell imaging in MG-63 cells for 

bioimaging application, respectively. In addition, upconversion cell imaging of GQDs have been 

investigated as upconversion luminescence usually requires NIR excitation, which allows deeper 

penetration and is less harmful compared with UV excitation [147]. Green and blue 

upconversion luminescence can be clearly observed inside of MC3T3 cells upon excitation at 

808 nm, suggesting the availability of GQDs for upconversion luminescence cell imaging[169].    

GQDs have also been developed as a drug delivery tool. Wang et al.[166] exploited folic 

acid-conjugated GQDs to load doxorubicin (DOX), a FDA approved anticancer drug. This 

nano-system can be internalized by target cells rapidly via receptor-mediated endocytosis and 

prolong the DOX release and accumulation in those cells. At the same time, the 
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photoluminescence of GQDs permits the real-time monitoring of the cellular uptake of this 

nano-system. Based on their results, this nano-system can target and kill HeLa cells efficiently, 

while possesses significant low cytotoxicity to non-targeted cells. 

Most recently, researchers have studied GQDs for their antibacterial ability, indicating their 

promising application for disinfection[170, 171]. The work by Gao et al.[170]demonstrated that 

GQDs are featured with peroxidase-like activity, enabling the generation of ●OH from H2O2. 

Based on the fact that ●OH possesses a higher antibacterial performance than that of H2O2, 

GQDs are likely to afford a more efficient antibacterial system when combined with a low dose 

of H2O2. This will circumvent the toxic concern of H2O2 at high concentration. Besides in vitro 

experiments, the systems even exhibit a superior antibacterial performance in vivo. The data 

strongly support that GQDs have the potential to serve as antibacterial agents for disinfection. 

1.5 Hypothesis and Objectives 

The goal of this study is to develop a novel and effective targeted drug delivery platform for 

the treatment of ovarian cancer. I hypothesize that a novel GQDs-based drug delivery system is a 

promising theranostic strategy for ovarian cancer. The GQDs-based drug delivery system is 

expected to enable the simultaneous monitoring, specific targeting to tumor, and minimizing 

toxicity to normal cells. To achieve the aforementioned goals, I proposed and worked on the 

following specific objectives: 1) to establish GQDs-based drug delivery system with the 

conjugation of folic acid as targeting ligand and Doxorubicin as anticancer drugs, 2) to validate 
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the therapeutic efficacy of such theranostic platform towards ovarian cancer, and 3) to investigate 

the toxicity of the current GQDs-based drug delivery system to immune system. 

1.6 Significance 

Despite the remarkable understanding and prodigious development of research in aspects of 

cancers, ovarian cancer still remains one of the most devastating diseases worldwide. The major 

limitations of the mainstay therapy, chemotherapy, are the lack of response and distinct side 

effects due to the lack of selectivity of the chemo-drugs. Therefore, it would be desirable to 

develop innovative DDS for targeted therapy of ovarian cancer. The contribution of this work is 

significant for the reason that the GQDs-based drug delivery system is designed as a targeting 

and effective chemotherapy for ovarian cancer. Moreover, the knowledge gained from these 

studies will also advance our understanding of cellular uptake and immunotoxicity regarding 

graphene quantum dots, and meanwhile benefits the further discovery of GQDs-based 

nanomedicines. 

1.7 Overview of Dissertation Chapters 

Chapter 1 reviews the theoretical basis of ovarian cancer and current therapeutic strategies, 

including surgery, chemotherapy, and nanoparticle based theranostics. It also briefly introduces 

the motive, significance, novelty, rationale, and objectives of this project. 

Chapter 2 introduces a one-step method to directly synthesize GQDs and their conjugation 

with targeting ligand and anti-cancer drug, and followed by the characterization of current 
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material and the drug loading/releasing profiles of the GQDs-based nano-DDS. 

Chapter 3 provides validation of the anti-cancer effects of this novel nano-DDS in folate 

receptor-overexpressing ovarian cancer cells and its low toxicity in normal ovarian epithelial 

cells. 

Chapter 4 elucidates the biological interactions of GQDs with immune system and the 

underlying mechanisms.  

Chapter 5 provides discussion and perspectives of directions for future research. 
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CHAPTER 2: SYNTHESIS OF GQDs AND GQDs-DDS 

Abstract 

Graphene quantum dots (GQDs) are a promising alternative fluorescent probe to traditional 

fluorophore probes. However, it is still a big challenge to fabricate GQDs in a rapid and 

cost-effective way, which limits their potential application. To address this problem, we 

developed a fast and facile preparation route of GQDs directly from graphite by a one-step 

hydrothermal reaction. Low cytotoxicity, highly green fluorescent GQDs with an average size of 

3 nm and quantum yield of 13.1% had been synthesized. Raman spectroscopy and Flourier 

transform infrared spectroscopy indicated the successful preparation. This chapter thereafter 

introduced the method to conjugate GQDs with folic acid (FA) and doxorubicin (DOX). The 

successful conjugation of GQDs-FA-DOX has been confirmed using UV, FTIR, and fluorescent 

spectroscopy. Drug loading and releasing profiles of GQDs-FA-DOX have been examined. 

2.1 Introduction 

As mentioned in the first chapter, graphene and its derivatives have exhibited great potential 

in optical, electrochemical, and biomedical applications[120, 144]. Among them, the biomedical 

application of GQDs is relatively new, but fast-growing in areas, such as bioimaging[121, 126, 

131, 152], biosensor[172], anti-bacterial[173, 174], and drug delivery[175, 176]. Combining the 
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advantages of graphene and quantum dots，GQDs are expected to serve as an excellent 

theranostics.  

Although progress has been made in synthesis of GQDs, there are still many shortcomings in 

those methods. For example, even though some groups have already succeeded using carbon 

fibers[177]or even coal[178] as the starting materials to synthesize GQDs, most methods are still 

based on GO[179].The past methods require to synthesize GO from graphite in the first step, and 

then to obtain GQD from GO, implying multiple and time-consuming steps. Therefore, the first 

objective of this chapter was to establish a fast and facile method to synthesize GQDs.  

The second objective of this chapter was to construct the targeted GQDs drug 

nano-conjugation. The targeting ligand specifically guided this nano-conjugation to the targeted 

delivery site, while the drug was used for chemotherapy to kill the carcinomatous cells. In this 

study, FA was chosen as the targeting ligands and DOX, a type of FDA approved drug, was 

selected as the chemo-drug.  

Folate receptors (FR) are high-affinity folate-binding proteins with an apparent molecular 

mass of 38kDa. The folate receptor exists in three major forms: FR-α, FR-β and FR-γ. Among 

them, FR-α is known to be overexpressed in ovarian cancers and is widely used as a molecular 

target for tumor-selective therapies[180]. According to previous studies[100, 181-184], FR-α 

overexpression occurs in more than 70% of primary and 80% of recurrent ovarian tumors. 

Therefore, the water-soluble B9 vitamin, FA, is widely adopted as a targeting ligand to folate 

receptor[105, 185, 186]. 
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Doxorubicin, a topoisomerase inhibitor, is a second-line drug in metastatic ovarian cancer. It 

has been confirmed to significantly improve the ovarian cancer patients’ survival[187, 188]. 

However, its usage is limited in clinical due to its severe cardiac toxicity[189-191].  The major 

side effect of DOX is the cause of chronic cardiomyopathy, and the mechanism is still not fully 

understood. The current proposed mechanism of DOX-induced cardiac toxicity includes 

generation of iron complexes, perturbation of calcium homeostasis, dysfunction of mitochondrial, 

and production of radical oxygen species (ROS)[192-194]. Using proper targeting delivery 

vehicles is considered to be a solution to reduce the cardiac toxicity of DOX. 

2.2 Materials and Methods 

2.2.1 Chemicals and Raw Materials 

Graphite, potassium permanganate (KMnO4), sodium carbonate (Na2CO3), ammonium 

hydroxide solution (NH4OH),hydrogen peroxide (H2O2), sulfuric acid (H2SO4), nitric acid 

(HNO3), dimethyl sulfoxide (DMSO), N-hydroxysuccinimide (NHS), 

1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC), folic acid (FA), and 

Doxorubicin (DOX)were purchased from Sigma-Aldrich Inc. (St. Louis, MO, USA). 

2.2.2 Synthesis of GQDs 

GQDs nanoparticles were prepared from graphite in the one-step hydrothermal reaction 

(Figure 2.1). Briefly, 60 mg graphite and 180 mg KMnO4 were weighted and added into 18 ml 
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mixed acid (ratio of H2SO4 to HNO3 is 5:1). The mixed solution was heated at 160 °C in a 

polytetrafluoroethylene-lined (also known as Teflon) autoclave reactor (20 ml) for 90 min. After 

the reaction, unreacted KMnO4 and acids were removed by adding H2O2 solution and saturated 

by Na2CO3 solution, followed by a 24-h dialysis (dialysis membrane with a cut-off of 1,000 Da). 

 

Figure 2.1 Scheme of the synthesis of GQDs from graphite via the one-step hydrothermal method. 
 

2.2.3 Synthesis of the GQDs-FA-DOX Conjugates 

The conjugation of GQDs with FA and DOX was modified and performed by following the 

previously described method [166]. In brief, synthesized GQDs were reacted with NHS and EDC 

in DMSO buffer for 30 min with sonication, followed by adding FA with stirring overnight. The 

solution was repeatedly dialyzed against distilled water using dialysis membrane tubing (cut-off 

1,000 Da) for 28 h. DOX (200 µl of different concentration DOX solutions ranging from 100, 

200, 300, 400 to 500 µg/ml) was loaded on GQDs (1ml of 1mg/ml) (via π-π stacking) in DMSO 

solution with stirring for 4 h. Then the mixture was centrifuge at 12,000 rpm for 30 min. The 
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pellet was kept as the product of GQDs-FA-DOX. Free DOX remained in the supernatant, and 

the absorption at 480 nm was measured to calculate the free drug content. The drug loading 

efficiency was calculated based on the following equation: drug loading (%) = ((weight of drug 

added − weight of free drug in the bath solution)/weight of carriers) × 100. The release of DOX 

from GQD–FA was monitored in PBS buffer at 24h and 48h, respectively. Absorption at 480 nm 

was measured to calculate the free drug content in the PBS buffer for DOX releasing profile 

based on the following equation: drug releasing (%) = (weight of free drug in the supernatant / 

weight of drug loaded) × 100. The absorption of DOX at 480 nm was measured using the 

Synergy H4 hybrid multi-mode microplate reader (BioTek).  

2.2.4 Characterization Techniques 

2.2.4.1 Transmission Electron Microscopy (TEM) 

The size and morphology of the samples were obtained using a JEOL-1400 transmission 

electron microscope operating at 100 kV. The size distribution was counted by ImageJ (NIH).  

2.2.4.2 High-resolution Transmission Electron Microscopy (HRTEM) 

The high-resolution images regarding the crystal lattice, including the selected area electron 

diffraction (SAED) patterns, were collected using a JEOL-2010 high-resolution transmission 

electron microscope operating at 200kV.  
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2.2.4.3 Atomic Force Microscopy (AFM) 

The AFM measurements were acquired with digital instrument Dimension 3100 atomic 

force microscope in the semi-contact mode using a nano-sized tip. 

2.2.4.4 Raman Microscopy 

The morphology of GQD was examined using Raman microscopy (Olympus, IX71).  

2.2.4.5 Fourier Transform Infrared (FTIR) Spectroscopy  

The FTIR spectra were obtained using the Perkin Elmer Spectrum100 series instrument by 

collecting 64 scans with a resolution of 4 cm-1 at the mid-infrared region (400 – 4000 cm-1).  

2.2.5 Quantum Yield (QY) Measurement 

Quinine sulfate in 0.1 M H2SO4 (QY=0.543) was chosen as the standard. The quantum 

yields of GQDs (in water) were calculated according to:  

	ϕ# = 	ϕ%&
I#
I%&

η#)

η%&)
A%&
A#

 

Where ϕ is the quantum yield, Ι is the measured integrated emission intensity, η is the 

refractive index of the solvent, and A is the absorbance. The subscript "st" refers to standard with 

known quantum yield and "x" for the sample. 
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2.3 Results and Discussion 

2.3.1 Characterization of GQDs 

2.3.1.1 Morphology of GQDs 

First, we synthesized GQDs using a novel one-step hydrothermal approach. The synthesized 

GQDs had a relatively narrow size distribution by TEM as shown in Figure 2.2 (A). The 

quantitative size distribution graph in Figure 2.2 (B) shows that the sizes of GQDs vary from 1.5 

to 5.5 nm with an average diameter of 3.03 nm counted by the ImageJ. Figure 2.2 (C) shows the 

morphology of the GQDs with a lattice parameter of 0.24 nm, and Figure 2.2 (D) illustrates the 

selected area diffraction (SAD) pattern of GQDs. 

The properties of the GQDs were further characterized by Raman spectroscopy. As shown in 

Figure 2.3(B), the Raman spectrum of GQDs was resolved into two distinctive D and G bands at 

~1340 and ~1580 cm-1, while those of graphite were at ~1328 and ~1572 cm-1, respectively. In 

terms of the nano-crystalline graphite, the intensity ratio (ID/IG) is known to be inversely 

proportional to the crystalline grains [148]. The ID/IG of GQDs in Raman spectra was 1.005, 

while the ID/IG of graphite was 0.823. This suggests that GQDs are more defective than graphite 

sheets, possibly due to the dominant contributions from the edge states at the periphery of GQDs. 
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Figure 2.2 Morphology characterization of GQDs. (A) TEM image of GQDs. (B) Size 
distribution showing that the particle size range is within 1.5–5.5 nm, with an average size of 3.03 
nm (scale bar = 50 nm). (C) HRTEM image showing the lattices structure of GQDs (scale bar = 2 
nm). (D) Corresponding SAD pattern. 
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Figure 2.3 (A) AFM image indicating the single or bi-layer of GQDs. (B) Raman spectra showing 
the D and G bands at ∼1340 and ∼1580 cm−1 (ID/IG of 1.01). 
 

2.3.1.2 Functional Groups of GQDs 

In order to further examine the functional groups at the edges of GQDs, the FTIR spectrum 

was measured. The result in Figure 2.4 shows that a number of chemical groups, including C-O 

and C=O, were introduced to the edges of GQDs during the oxidative cutting process. 

Consequently, the resultant GQDs possessed an improved water-solubility. Moreover, these 

functional groups on the basal plane or edge enable GQDs to be further modified, as well as 

conjugated with target ligands and chemotherapeutic ligands to form a multifunctional 

theranostic system.   
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Figure 2.4 FTIR spectra of GQDs (black line) and graphite (red line). 
 

2.3.1.3 Photoluminescence of GQDs 

The photoluminescence of GQDs was then measured. Figure 2.5 (A) displays the 

photoluminescence spectrum of GQDs aqueous solution upon excitation at 440-nm wavelength. 

The inset in Figure 2.5 (A) is the photograph of GQDs in aqueous solution collected upon 

365-nm UV light excitation in which green fluorescence could be observed with the naked eye. 

Like most luminescent carbon nanoparticles, the GQDs also exhibit an excitation-dependent PL 

behavior. To explore the optical properties of the GQDs, I undertook a detailed PL study using 

different excitation wavelengths. The emission peaks of GQDs shifted by varying excitation 

wavelengths, exhibiting excitation wavelength-dependent PL behavior as shown in Figure 

2.5(B). 
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Figure 2.5 Photoluminescence emission spectra of GQDs. (A) with excitation at 440 nm 
wavelength (inset: visible green fluorescence of GQDs aqueous solution under 365 nm UV light, 
as observed with the naked eye) and (B) with different excitation wavelengths from 380 to 480 nm. 
 

2.3.1.4 Modified Synthesis of GQDs 

In order to optimize the synthesis approach, a series of reactions were performed at different 

temperatures or in the absence of oxidants. For safety concerns, the reaction temperatures were 

confined below 160 ºC, roughly varying from 100 ºC to 160 ºC. The reaction without KMnO4 (at 

160 ºC) was also carried out to determine the necessity of KMnO4. Since graphite has a large 

size and is insoluble in water, graphite and its oxidant mixture has a black color, while the GQDs 

aqueous is clear yellow color under the natural light. Figure 2.6 (A) shows the color of the 

products at different reaction conditions. It can be seen that without KMnO4 or under 100 ºC, the 

reaction barely happens and most of the products are expected to be graphite pieces instead of 

GQDs. Figure 2.6 (B) also shows the luminescent intensity of the resulting products tended to 

significantly attenuate, when reaction temperature was below 100 ºC or in the absence of KMnO4. 

The results indicate the synergistic interaction of heat and oxidants in this hydrothermal reaction.  
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Figure 2.6 Photoluminescence behavior of the GQDs aqueous solution for temperature-dependent 
reactions. (A) The color of resulting products and (B) Photoluminescence emission spectra of 
GQDs aqueous solution at different synthesis temperatures. 
 

2.3.1.5 Quantum Yield of GQDs 

  Table 2.1 shows the results obtained using the method and equation described in 2.2.3 to 

calculate the quantum yield. The photoluminescence quantum yield is determined to be 13.1% 

using quinine sulfate of 54% as the reference.  

Table 2.1 Quantum yield of GQDs using quinine sulfate as a reference. 

 

Sample 
Integrated emission 
intensity(I) 

Absorbance(A) 
Refractive index 
of the solvent(η) 

Quantum 
yield(ϕ) 

Quinine sulfate 3432500 0.067 1.33 0.543 
GQDs 1207000 0.097 1.33 0.131 
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2.3.2 Characterization of GQDs-FA-DOX 

2.3.2.1 Morphology and Functional Groups of GQDs-FA-DOX 

Upon preparation of GQDs from graphite following the one-step hydrothermal synthesis 

method, GQDs were then conjugated with FA following a modified previous report[166]. The 

synthesized GQDs-FA-DOX had a relatively narrow size distribution. TEM image shows that 

the sizes of GQDs-FA-DOX were between 9 - 12 nm as shown in Figure 2.7(A) and Figure 

2.7(B) shows its size distribution counted by ImageJ. The conjugation of the FA and the loading 

capacity of DOX was confirmed by FTIR and UV absorbance spectra. Although the drug loading 

capacity of DOX was able to quantitatively measured and shown in later results, the 

stoichiometry of FA per GQD was unable to define in current experiment condition.  

 

Figure 2.7 Morphology and functional groups of GQDs-FA-DOX. (A) TEM image and (B) size 
distribution of GQDs-FA-DOX. (C) FTIR spectra of graphite (black), GQDs (green), GQDs-FA 
(blue) and GQDs-FA-DOX (red). 
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The FTIR spectra results of GQDs, GQDs-FA, and GQDs-FA-DOX are shown in Figure 

2.7(B). Graphite is only composed with C-C, which does not give any peaks in FTIR. Compared 

with GQDs, the appearance of new peaks at 1271 and 1560cm−1 suggests the conjugation with 

FA, which are assigned to C-N and N-H stretching, respectively. The new broad peak in the 

3300–3500 cm−1 region corresponds to the N-H vibration. In addition, characteristic amide–

carbonyl (-NH-CO-) stretching vibration is observed at 1643 cm−1, which implies the formation 

of amide groups in GQDs–FA. For GQD–FA-DOX, the new peaks at 1730 cm−1 suggests the 

conjugation with DOX, which is assigned to the stretching vibration of ketone carbonyl (C=O) 

groups. The peaks at 1240 and 990 cm−1 are assigned to alkoxy (-C-O) groups. Those new 

groups suggested the successful loading of DOX.  

2.3.2.2 UV Spectra of GQDs-FA-DOX 

The UV-visible absorption spectrum is shown in Figure 2.8(A). At 230 nm, there is a strong 

absorption peak, indicating π → π* transition of aromatic sp2 domains of GQDs. After 

conjugated with FA, GQDs-FA presents a new peak at 280nm, which is in accordance with the 

previous study by Wang et al[166]. The doxorubicin has a strong absorbance at around 480nm, 

which can be observed in GQDs-FA-DOX. 
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- 

Figure 2.8 (A) UV spectra and (B) fluorescent emission spectra of GQDs (green), GQDs-FA 
(blue), and GQDs-FA-DOX (red). 
 

2.3.2.3 Fluorescent Emission Spectra of GQDs-FA-DOX 

In addition, the photoluminescence behavior of GQDs, GQDs-FA, and GQDs-FA-DOX 

were examined and shown in Figure 2.8(B). When excited at 480 nm, GQDs, GQDs-FA, and 

GQDs-FA-DOX show an emission peak at 540nm. The fluorescence of GQD is slightly reduced 

after the conjugation with FA presumably due to the changes of the chemical groups. 

Interestingly, DOX is supposed to show a strong red fluorescent emission at 560-590 nm upon 

excitation at 480 nm. However, the red emission of DOX was not observed after loading to 

GQDs-FA. 

2.3.3 Drug Reloading and Releasing Profile 

The absorbance at 480 nm versus the different concentrations of DOX was normalized by 

linear regression. The standard curve for the drug loading followed a good linear correlation ( 
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Figure 2.9). The typical equation of the standard curve was described: 

Y=6.466*X-0.6904.The R2 of the standard curve is 0.9720, which indicates a good fit of the 

linear regression model. 

 

Figure 2.9 DOX-absorbance standard curve 

 

Since the products of GQDs-FA-DOX remain in the pellet, the drug loading and releasing 

are based on the free DOX in the supernatant. The absorption of DOX at 480 nm was measured 

to calculate the free drug content. The DOX loading efficiency was calculated based on the 

following equation: drug loading (%) = ((weight of drug added − weight of free drug in the bath 

solution)/weight of carriers) × 100. The DOX releasing profile based on the following equation: 

drug releasing (%) = (weight of free drug in the supernatant / weight of drug loaded) × 100. As 

shown in Figure 2.10(A), the maximum loading efficiency capacity of DOX in GQDs-FA was 
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achieved at 64% when the loading ratio of DOX to GQDs-FA was 1:2. The release of DOX from 

GQD–FA was monitored in cell culture medium at 24 h and 48 h, respectively. The drug 

releasing of GQD-FA-DOX turned out to be in a time-dependent manner. The release of DOX 

could reach as high as 50% within 48 h, as seen in Figure 2.10(B).  

 

 
Figure 2.10 Drug Loading (A) and releasing (B) profile of GQDs-FA-DOX in aqueous solution 

2.4 Conclusions 

In my approach, GQDs with green fluorescence were synthesized directly from graphite 

powders using a one-step chemical oxidation reaction. This method required less reaction time, 

as fast as 90 min, and offered a high product yield of up to 30% with the photoluminescence 

quantum yield of 13.1% (quinine sulfate of 54% as the reference).  GQDs exhibited bright 

fluorescence and excellent solubility in aqueous solution, thus enabling potential biomedical 

applications. The GQDs-FA-DOX DDS was successfully synthesized with a maximum loading 

efficiency capacity of 64% in terms of DOX. 
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CHAPTER 3: VALIDATION OF THE ANTI-CANCER EEFECTOF GQDs-DDS 

Abstract 

A new type of graphene quantum dots (GQDs)-based nano-sized drug delivery systems 

(DDS) was introduced for ovarian cancer treatment. My results demonstrate that doxorubicin 

(DOX) was successfully loaded onto the folic acid (FA)-conjugated GQDs, and satisfactory 

therapeutic efficacy was reached. Moreover, the real-time monitoring of cellular uptake has also 

been achieved utilizing the luminescent property of GQDs. Such superb drug loading capability 

and the luminescent property herald GQDs as a desirable theranostic tool for cancer therapy, and 

also hold the promise of acting as a multifunctional platform for other disease treatment. In this 

chapter, the results show that the GQDs-FA-DOX nano-conjugates can be an excellent targeted 

drug delivery nano-platform for folic receptor-overexpressed ovarian cancer. 

3.1 Introduction 

Ovarian cancer, one of the most dreadful malignancies of the female reproductive system, 

poses a lethal threat to women worldwide. It has been reported as the leading cause of cancer 

mortality among gynecological malignancies in the United States[1, 2]. The current frontline 

strategy for ovarian cancer treatment is cytoreductive surgery followed by chemotherapy with 

carboplatin and paclitaxel[10, 12-16]. Less often, treatment may include radiotherapy. Primary 
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surgery ensures the removal of large tumor masses and is indeed a critical first step to improve 

patient survival[15, 16]. Even though most of the cancer may have been removed during surgery, 

there may still be some residual tumors present. For this reason, chemotherapy is typically 

required for the purpose of attacking cancer cells and slowing or stopping their growth. Although 

promising clinical outcomes have been witnessed through current treatment strategy, 

chemotherapy will inevitably jeopardize normal healthy cells while killing cancer cells. In 

addition, another concern is associated with the multidrug resistance (MDR)[52, 75]. To 

overcome such unwanted side effects caused by chemotherapy, drug delivery systems (DDS) 

have been perceived as a significant approach for cancer therapy, and increasing attention has 

been focused on their design and development. In particular, when their sizes are reduced to 

nanoscale, the nano-sized DDS present more distinguished merits including: (i) enhanced 

permeation and retention (EPR) effect, (ii) further improving drug accumulation at tumor sites 

owing to the presence of targeting moieties (i.e. active targeting), (iii) eschewing MDR 

mechanisms, and (iv) increasing solubility of poorly soluble drugs. Consequently, NDDS are 

expected to bring about new breakthroughs for the development of cancer treatment by 

researchers. 

More recently, graphene quantum dots (GQDs), a novel type of carbon nanomaterials with 

combined properties of graphene and quantum dots (QDs), are highly likely to be exploited as an 

ideal NDDS for cancer therapy. First of all, like other members in carbon materials, GQDs have 

been proved to have relatively low cytotoxicity as per the previous reports[195-197]. More 
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importantly, GQDs exhibit an excellent loading capability since a diversity of chemical groups 

can be easily functionalized on their surface, enabling the successful conjugation with targeting 

moieties[166, 198, 199]. On the other hand, the aromatic structure of GQDs permits the 

absorption of drugs through π-π stacking interactions. Furthermore, GQDs possess inherent 

luminescent properties, which, while similar to other QDs, are less toxic and more chemically 

stable[195, 200, 201].There are even reports on their upconverted luminescence upon 

near-infrared light excitation[202, 203]. Such properties make it possible for GQDs to be 

employed as luminescent probes, and thus the delivery efficacy can be tracked by detecting their 

luminescent signal. Based on the above advantages, GQDs are considered as versatile DDS for 

anti-cancer drug delivery and some preliminary research results of GQDs indicate the feasibility 

and reliability of the current DDS[166, 175].  

However, the majority of previous investigations, to the best of our knowledge, principally 

concentrated on the synthesis and characterization of GQDs. Research on the practical cancer 

treatment using GQDs as DDS is still insufficient and unsystematic, especially for ovarian cancer 

treatment. Herein, I have systematically investigated folic acid (FA)-conjugated GQDs as a 

vehicle of the anti-cancer drug doxorubicin (DOX) for ovarian cancer treatment. The results 

imply that our designed DDS could significantly minimize the adverse effect of DOX on normal 

ovarian epithelial cells, the anti-cancer drug distribution could be monitored via the 

luminescence produced from GQDs, and good ovarian cancer treatment efficacy has been 

realized. Taken together, our studies not only have demonstrated that GQDs is a promising 
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multifunctional platform for multidrug loading, but can also be a useful reference to the 

investigations of other DDS and disease. 

3.2 Materials and Methods 

3.2.1 Chemicals and Raw Materials 

Ribonuclease, propidium iodide (PI), DMSO, MTT, crystal violet, folic acid, and 

Doxorubicin were purchased from Sigma-Aldrich Inc. (St. Louis, MO, USA). McCoy's 5a 

Medium, 5-(and 6)-chloromethyl-2’,7’-dichlorodihy-drofluorescein diacetate (CM-H2DCFDA), 

fetal bovine serum (FBS), penicillin and streptomycin, and phosphate buffered saline (PBS) were 

obtained from Invitrogen Inc. (Carlsbad, CA, USA). Hoechst 33342, a nucleus staining dye, was 

purchased from Enzo life sciences (Farmingdale, NY, USA). Membrane Protein Extraction Kit 

was purchased from Thermofisher (Waltham, MA, USA).  The polyvinylidene difluoride 

(PVDF) membrane was purchased from Millipore Inc. (Bedford, MA, USA). Primary 

monoclonal antibodies against human folate receptor were purchased from Cell Signaling 

Technology Inc. (Beverly, MA, USA). The antibody against human β-actin was purchased from 

Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA). Visualization was performed using the 

BioRad system (Hercules, CA, USA) with the electro-chemiluminescence substrate purchased 

from Pierce (Hudson, NH, USA).  
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3.2.2 Cell Culture 

The normal ovarian epithelial cell line T80 and ovarian carcinoma cell line OVCAR3 were 

obtained from American Type Culture Collection (Manassas, VA, USA). Cells was cultured in 

McCoy's 5a Medium containing 10% non-heated-inactivated FBS and 0.5% penicillin and 

streptomycin in a humidified incubator of 5% CO2/95% air at 37 ℃.  

3.2.3 Cell Viability Assay 

Cells were treated with various concentrations of GQDs-FA-DOX (0, 0.25, 0.5, 1, 2, and 4 

µM equivalent to DOX) for 24 h and 48 h, respectively. Cell viability was determined by the 

MTT assay. In brief, the cells were treated with GQDs-FA-DOX conjugates, 10 µL MTT (5 

mg/ml) was added into each well and incubated for 4 h, culture medium was removed and 100 

µL DMSO was added to dissolve formazan crystals. Absorbance was read at 560 nm for 

formazan and 670 nm for background using the Synergy H4 hybrid multi-mode microplate 

reader (BioTek). The results were given as relative value to the control in percent.  

3.2.4 Colony Formation Assay 

Colony formation assay can determine the effectiveness of the nano-drug delivery system 

based on the ability of a single cell to grow into a colony. First, two hundred cells were seeded 

into six-well plates. After treatment with various agents, including GQDs, GQD-FA-DOX, 

GQD-DOX, and DOX, cells remained in the cell culture medium for 14 days. Colonies were 

fixed with 4% paraformaldehyde solution and then stained with 0.5% crystal violet.  
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3.2.5 ROS Generation Assay 

Intracellular ROS level was determined using a fluorescent dye (CM-H2DCFDA). Briefly, 

T80 and OVCAR3 cells were seeded in 96-well plates for 2 days. After treatment with various 

agents, including GQDs, GQD-FA-DOX, GQD-DOX, and DOX, for 24 hours, 5 

µMCM-H2DCFDA dye was added, and the cells were incubated for 15 min at 37 °C. Then the 

mean intensity of fluorescence of 2',7'-dichlorofluorescein (DCF) was determined using a 

Synergy H4 hybrid microplate reader upon 485 nm excitation and detection at 525 nm. The 

fluorescence was measured every 5 min for 45 min. The results were given as the relative value 

to the control in percentage. Cell-free test has been done without any interference due to different 

excitation/emission between GQDs and DCF. LPS was used as the positive control in parallel 

experiments. Each experiment was performed three different times (i.e. on three different days) 

and each time it was run in triplicates. 

3.2.6 Quantification of Apoptosis 

Apoptotic cells were detected using the FITC Annexin V apoptosis kit (eBiosciences, San 

Diego, CA, USA) according to the manufacturer’s instruction. In brief, macrophages were 

incubated with different concentrations of GQDs and at different time points. Cells were washed 

with PBS, centrifuged and re-suspended in 100 µL binding buffer containing 5 µL of Annexin 

V-FITC and 5 µL of PI. After 15 min incubation at 37 ºC in the dark, cells were analyzed using 

flow cytometry.  
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3.2.7 Determination of Cellular Localization and Uptake 

For the localization assay by confocal laser microscopy, the cells were seeded to 

eight-chamber slides. The cells were cultured for 24 h, washed thrice with PBS, and then 

incubated with GQD–FA-DOX (1µM) for 1h. After washing thrice with cold PBS, cells were 

incubated with Hoechst 33342 for nuclear staining. After 10 min, the cells were washed again 

with PBS buffer. Fluorescence of cells was observed using a confocal microscope (Olympus, 

Japan). Hoechst 33342 was excited with 405 nm laser, and the signal was collected from 425 nm 

to 475nm. GQDs and DOX were excited with a 488nm laser, and their signals were collected 

from 500 nm to 530 nm and 552 nm to 617 nm, respectively. 

For the drug uptake quantification assay by flow cytometry, the cells were seeded to six-well 

plates. The cells were cultured for 24 h, washed thrice with PBS, and then incubated with GQD–

FA-DOX and GQD-DOX (1µM) for 1h. Cells were then detached by 5% trypsin and washed 

with cold PBS. Cells were incubated with Hoechst 33342 for nuclear staining. After 10 min, the 

cells were washed again with PBS buffer and observed by flow cytometry (Olympus, Japan). 

3.2.8 Western Blotting Assay 

The membrane proteins of OVCAR3 and T80 cells were extracted using the Mem-PER Plus 

Membrane Protein Extraction kit following the manufacturer's protocol and previous published 

method [204]. The concentration of the proteins was quantified by BCA assay. Proteins were 

diluted in 4 × SDS-PAGE sample loading buffer (Bioworld, Atlanta, GA, USA) and denatured at 
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95 ºC for 10 min. An aliquot of total protein (20 µg) was added to the gel, and the proteins were 

electrophoresed on 12% SDS-PAGE mini gels and transferred onto PVDF membranes. 

Membranes were blocked at room temperature with 5% bovine serum albumin (BSA) in 

Tris-buffered saline Tween-20 (TBST) buffer and probed with targeted primary antibodies 

overnight in the cold room; then they were blotted with the respective secondary antibody. 

Visualization was performed using the BioRad system (Hercules, CA, USA) with an 

electro-chemiluminescence substrate. Protein level was normalized to the matching 

densitometric value of an internal control.  

3.2.9 Statistical Analysis 

Statistical analysis was performed using the Prism GraphPad software (Chicago, IL, USA). 

All experiments were performed at least three independent times in triplicate. All mean values 

are presented with the standard deviation. Treatment effects were analyzed using one-way 

analysis of variance (ANOVA). The differences between groups were tested by Tukey’s multiple 

range tests with p< 0.05 considered as statistically significant. 

3.3 Results and Discussions 

3.3.1 FR Expression by OVCAR3 Ovarian Cancer &T80 Normal Epithelial Cells 

FR is a glycosyl-phosphatidylinositol-anchored protein on the membrane[205]. The 

localization of FR usually on the cell membrane, but some studies also indicated FR can 
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translocate to the nucleus[206]. In this dissertation, FR was used as the receptor for 

GQDs-FA-DOX to specifically target the tumor cells. Therefore, the relative expression levels of 

FR on cell membrane were important to define the cell models. Thus, the whole membrane 

proteins of OVCAR3 and T80 cells were extracted and the FR expression level was determined 

by western blotting assay. Figure 3.1 is the representative western blotting imaging and the 

quantitative bar graph of the FR expression in OVCAR3 cells and T80 cells. The FR expression 

in OVCAR3 cells was 13.3-folder higher than that of T80 cells. Therefore, OVCAR3 cells were 

used as FR-positive cell model in this dissertation, while T80 cells were used as the FR-negative 

model.  

 

 
Figure 3.1 Western blotting imaging and the quantitative bar graph of the FR expression in T80 
and OVCAR3 cells. Data are presented as the mean ± SD from three independent experiments. * p 
< 0.05; by one-way ANOVA. 
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3.3.2 Uptake of GQDs-FA-DOX by Ovarian Cancer and Normal Epithelial Cells 

The uptake of GQDs-FA-DOX by ovarian cancer & normal epithelial cells were examined 

using confocal laser microscopy. Figure 3.2 illustrates the images obtained from confocal laser 

microscope. Figure 3.2(A) illustrates the GQDs-FA-DOX uptake by OVCAR3 cells, Figure 

3.2(B) is the OVCAR3 cells without GQDs-FA-DOX.  Figure 3.2(C) illustrates the 

GQDs-FA-DOX uptake by T80 cells. Figure 3.2(D) illustrates the T80 cells without 

GQDs-FA-DOX. For each row, the first column was the green fluorescence from the GQDs, 

which indicates the localization of GQDs-FA-DOX in the cytosol. The second column illustrates 

the Hoechst 33342 staining of the nucleus of cells. The third column illustrates the images of 

cells under differential interference contrast (DIC). The fourth column illustrates the merged 

image of GQDs staining, Hoechst, and DIC illumination. DOX staining is not shown here since 

the fluorescent was quenched and no obvious signal could be obtained using the confocal 

microscopy.  Compared the results of Figure 3.2 (A) with that of Figure 3.2 (B), it is obvious 

that the GQDs-FA-DOX can enter into the FR overexpressed OVCAR3 cells based on the strong 

bright green fluorescent signalin Figure 3.2 (A). In the current experiment condition, the ratio of 

the DDS uptake and binding surface was unable to quantitate. However, the relative ratio of the 

uptake in OVCAR3 cells and T80 cells were determined using flow cytometry in later results. In 

Figure 3.2 (D), T80 cells has some auto-fluorescent signal even without the GQDs-FA-DOX. 

The results of incubation of GQDs-FA-DOX with FR negative expressed cells are shown in 

Figure 3.2 (D), and no significant change in the fluorescent intensity is observed. This may be 
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due to no uptake of GQDs-FA-DOX by T80 cells. Therefore, GQDs-FA-DOX can specifically 

target FR-overexpressed ovarian cancers without entering the ovarian normal cells, which is a 

favorable property for the nano drug delivery system. 

 

 

Figure 3.2 Confocal microscopy imaging for GFD or GD treatment to OVCAR3 cells or T80 cells 
for 30 minutes 

 

The quantitative measurement of GQDs-FA-DOX uptake by ovarian cancer and normal 

epithelial cells were examined using flow cytometry. Figure 3.3(A) and (C) represent histograms 

of T80 cells and OVCAR3 cells without any treatment as controls while (B) and (D) were 

histograms of T80 cells and OVCAR3 cells treated with GQDs-FA-DOX for 30 min.  Figure 

3.3(E) is the quantitative bar graph of the fluorescent intensity of GQDs-FA-DOX. It is obvious 
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that for OVCAR3 cells, untreated cells barely had a fluorescent signal, while GQDs-FA-DOX 

treated cells presented a significant increase in green fluorescence. However, there was no 

significant change between treated T80 cells and untreated T80 cells. The treated OVCAR3 cells 

had a significant 20 folder higher fluorescent intensity than the treated T80 cells. Figure 3.3 (F) 

shows the percentage of cells that uptake GQDs-FA-DOX. Define the gate to set both control 

group as zero percent, and the 25% of T80 cells may uptake GQDs-FA-DOX, while 100% of 

OVCAR3 cells uptake GQDs-FA-DOX. Those results confirmed that GQDs-FA-DOX 

specifically entered into FR overexpressed ovarian cancers without entering the ovarian normal 

cells, indicating a desired targeting effect for the nano drug delivery system. 

To determine whether the targeting effect was based on FR or not, folic acid was used to 

competitively inhibit the binding of GQDs-FA-DOX (GFD) to the FR. After 30 min incubation 

with free FA, GQDs-FA-DOX was added into the OVCAR3 cells and the cellular fluorescent 

intensity of GQDs-FA-DOX was examined by flow cytometry. Figure 3.4 (A), (B), and (C) are 

histograms of untreated, GQDs-FA-DOX treated, and FA+ GQDs-FA-DOX treated OVCAR3 

cells, respectively. The FA significantly decreased the cellular fluorescent intensity of 

GQDs-FA-DOX by 70% percent as shown in Figure 3.4 (D). Figure 3.4(E) showed a one-quarter 

decrease of the uptake cell percentage. The extend of decreasing in uptake cell percentage was 

less than the decreasing of the fluorescent intensity, which may be due to the fact that the FA 

binding to FR is a dynamic process and FA is a competitive inhibitor, which would not 

completely inhibit the binding between GQDs-FA-DOX and FR. 
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Figure 3.3 Quantitative measurement of uptake GFD by T80 and OVCAR3 cells using flow 
cytometry. Data are presented as the mean ± SD from three independent experiments. * p < 0.05; 
by one-way ANOVA. 
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Figure 3.4 Quantitative measurement of uptake GFD inhibited by folic acid treatment 30 minutes 
before treated with GFD by OVCAR3 cells using flow cytometry.  Data are presented as the 
mean ± SD from three independent experiments. * p < 0.05; by one-way ANOVA. 

 

3.3.3 Effect of GQDs-FA-DOX on Cellular Viability 

To determine the effective dosage of GQDs-FA-DOX on ovarian cancer cells and normal 

cells, a dose-course MTT assay was undertaken on both T80 and OVCAR3 cells. The cells were 

treated with 0.25, 0.50, 1, 2, and 4 µM (equivalent to DOX concentration) GQDs-FA-DOX, 

GQDs-DOX, or DOX for 24 h. The corresponding IC50 for GQDs-FA-DOX, GQDs-DOX, or 

DOX in T80 cells was 5.05, 6.95, and 0.86 µM as shown in Figure 3.5(A). The corresponding 

IC50 for GQDs-FA-DOX, GQDs-DOX, or DOX in OVCAR3 cells was 1.70, 9.71, and 0.93 µM 

as shown in Figure 3.5(B). Therefore, the 1µM (equivalent to DOX concentration) of  
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Figure 3.5 The IC50 of DOX, GQDs-DOX (GD) and GQD-FA-DOX (GFD) on (A) T80 and (B) 
OVCAR-3 for 24 hour treatment. Data are presented as the mean ± SD from three independent 
experiments. 
 

GQDs-FA-DOX and GQDs-DOX were chosen as the working concentration in the following 

studies. 

3.3.4 Effect of GQDs-FA-DOX on Colony Formation Ability 

To determine the effectiveness of the GQDs based nano-drug delivery system, colony 

formation assay was used. The colony formation examines the ability of a single cell to grow into 

a colony. Figure 3.6 (A) exhibits the OVCAR3 cells and (B) T80 cells grown for 14 days after 

being treated for 24 hours  naturally, GQDs, GQD-DOX, GQD-FA-DOX, FA+GQD-FA-DOX, 

and DOX, from left to right.  For OVCAR3 cells, colony numbers and sizes of GQDs, 

GQDs-DOX, and FA pre-treated 30 min then treated with GQDs-FA-DOX had no significant 

difference. However, GQDs-FA-DOX and DOX treated OVCAR3 had a significant decrease in 

OVCAR3 colony numbers and sizes comparing to the untreated control group. For T80 cells,  



www.manaraa.com

 55 

 

Figure 3.6 colony formation assay of (A) OVCAR3 and (B) T80 cells. 

 

there was no difference for GQDs, GQD-DOX, GQD-FA-DOX, and FA+GQD-FA-DOX in 

colony numbers and sizes comparing to the control group. Only the DOX treated groups had a 

significant decrease. Therefore, GQD-FA-DOX selectively inhibited the colony growth in 

OVCAR3 cells, suggesting a desired targeting and therapeutic effect to FR overexpressed 

ovarian cancer cells. 

3.3.5 Effect of GQDs-FA-DOX on ROS Generation 

The ROS-induced injury is known as an important mechanism of DOX’s antitumor activity. 

Therefore, ROS generation of OVCAR3 and T80 cells was examined. As shown in Figure 

3.7(A), after 24 h of treatment, GQDs-FA-DOX significantly increased ROS in OVCAR3 cells 

by 2.2 folds, while GQDs-DOX and GQDs did not significantly increase ROS.. FA treatment for 

30 min before the GQDs-FA-DOX treatment for 24 hours also significantly decrease the ROS 

generation comparing to those treated with GQDs-FA-DOX but without FA. Figure 3.7 (B) 

shows ROS generation for the same treatment with the T80 cells. Only the positive controls  
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Figure 3.7 The ROS generation of GQDs, GQDs-DOX (GD) and GQD-FA-DOX (GFD), 
FA+GQDs-FA-DOX, DOX, and LPS on (A) T80 and (B) OVCAR-3 for 24 hour treatment. Data 
are presented as the mean ± SD from three independent experiments. * p < 0.05; by one-way 
ANOVA. 
 

DOX and LPS significantly increased the ROS generation, but GQDs-FA-DOX has no 

significant effect on ROS generation in T80 cells. Therefore, GQDs-FA-DOX would selectively 

target the OVCAR3 cells and increased its ROS generation, and FA inhibited this process. 

3.3.6 Apoptosis Effect of GQDs-FA-DOX on Ovarian Cancer and Normal Epithelial Cells 

To further examine the anti-cancer effect of GQDs-FA-DOX on ovarian cancer cells, the 

effect of various nano-systems on cellular apoptosis was quantified by flow cytometry using 

Annexin-V-FITC and PI staining.  The T80 cells and OVCAR3 cells were treated with GQDs, 

GQDs-DOX (GD) and GQD-FA-DOX (GFD), and DOX, respectively, for 24 hours. The number 

of apoptotic cells without any treatment for both cell lines were 3-5.0% (early + late apoptosis). 

As shown in Figure 3.8 (A), DOX alone caused significant apoptosis in T80 cells, while 

GQDs-FA-DOX had no effect on T80 cells. However, for OVCAR3 cells, GQDs-FA-DOX  
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Figure 3.8 The apoptosis effect of DOX, GQDs, GQDs-DOX, and GQD-FA-DOX on (A) T80 
and (B) OVCAR-3 for 24 hour treatment. Data are presented as the mean ± SD from three 
independent experiments. * p < 0.05; by one-way ANOVA. 

 

caused significant apoptosis (i.e., 42%) comparing to the untreated group or the GQDs-DOX 

group. Therefore, it was apparent that GQDs-FA-DOX could selectively lead to the apoptosis of 

ovarian cancer cells, but had a very limited effect on the apoptosis of normal ovarian epithelial 

cells. 

3.4 Conclusion 

In this chapter, the anti-cancer effect of the novel GQDs-based NDDS, GQDs-FA-DOX, was 

validated. Luminescent GQDs enabled the real-time tracking of the cell uptake and drug 

distribution. The targeted ligand FA for such GQDs-based NDDS effectively and selectively 

targeted the FR ovarian cancer cells. Overall, GQDs-FA-DOX presented a desired therapeutic 

effect to ovarian cancer cells with no side effects on ovarian normal cells, indicating a potential 

tumor-targeted drug to the ovarian cancer treatment. My current studies on GQDs based NDDS 
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will not only benefit ovarian cancer therapy, but also could be extended to the therapy of other 

cancers by loading appropriate targeting ligand and therapeutic compounds. 
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CHAPTER 4: ELUCIDATION OF GQDs IMMUNOTOXICITY1 

Abstract 

The biomedical application of graphene quantum dots (GQDs) is a new emerging area. 

However, data addressing their safety is scarce. Particularly, the effect of GQDs on the immune 

system remains unknown. This chapter describes studies addressing the interaction of GQDs 

with macrophages and the underlying mechanisms. We show that GQDs slightly reduce 

macrophage cell viability and membrane integrity, and correspondingly increase reactive oxygen 

species (ROS) generation and apoptotic and autophagic cell death.  Treatment with GQDs 

increase in the expression level of Bax, Bad, caspase 3, caspase 9, beclin 1, and LC3-I/II, and a 

decrease in Bcl-2. Furthermore, low concentrations of GQDs significantly increased the 

expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-8, whereas high 

concentrations of GQDs elicited opposite effects on the production of cytokines. SB202190, a 

selective inhibitor of p38 mitogen-activated protein kinase (MAPK), abolished the 

cytokine-inducing effect of GQDs in macrophages. Moreover, GQDs significantly increased the 

phosphorylation of p38 MAPK and p65, and promoted the nuclear translocation of nuclear 

                                                
1This chapter has been reprinted from Toxicology, 327, Qin, Y., et. al., Graphene quantum dots induce apoptosis, autophagy, and 
inflammatory response via p38 mitogen-activated protein kinase and nuclear factor-kappaB mediated signaling pathways in 
activated THP-1 macrophages, p. 62-76, 2015, with permission from Elsevier. Permission documentation may be found in the 
Appendix. 
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factor-κB (NF-κB). Taken together, these results show that GQDs induce ROS generation, 

apoptosis, autophagy, and inflammatory response via p38MAPK and NF-κB mediated signaling 

pathways in THP-1 activated macrophages. 

4.1 Introduction 

The increasing interest in the biomedical application of GQDs, it raises a concern on the 

potential organ toxicities of GQDs. Currently, the most widely used QDs are made from 

cadmium and selenium which possess remarkable cytotoxic effects[207]. Due to the distinct 

physico-chemical features between GQDs and QDs, it has been suggested that GQDs could be a 

new type of nanomaterial with improved compatibility with the biological system and its 

cytotoxic effect has been examined in a number of cancer cell models[195, 201, 208, 209]. For 

example, Zhang’s group compared the GQDs’ cytotoxicity with micrometer-sized GO and the 

results suggested that small-sized GQDs exhibited a low cytotoxicity in gastric and breast cancer 

cells[195]. Moreover, the cytotoxic effect of structurally modified GQDs was also examined. 

Yuan et al. reported a low cytotoxic effect of GQDs with several modifications on functional 

groups, including -NH2, COOH and CO-N(CH3)2 in lung cancer cell model[208]. Furthermore, 

the distribution and toxicology of GQDs have been examined in vivo, and it showed no obvious 

toxicity in mice[201]. Above all, there is the lack of information on the modulatory effect of 

GQDs on the immune system. Human immune system is the first and foremost safeguard of the 
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body against infection, malignancy, and xenobiotic exposure. The immune system also interacts 

with almost all other organ systems.   

Due to the key role of the immune system as the primary defense mechanisms against 

infectious agents and xenobiotic exposure, undesired suppression or stimulation of immune 

system is harmful to the body. Thus, the unfavorable effect of GQDs on immune system will 

compromise the biomedical application of GQDs. However, the interaction of GQDs with the 

immune system is unknown, and the related mechanism is unclear. In this regard, we attempted 

to evaluate the immunotoxicity and the underlying mechanism of newly synthesized GQDs in 

macrophages.  

4.2 Materials and Methods 

4.2.1 Chemical and Reagents 

Phorbol myristate acetate (PMA), PI, DMSO, MTT, N-acetyl-L-cysteine (NAC, a ROS 

scavenger), apocynin (APO), diphenyleneiodonium (DPI), Nω-nitro-L-arginine methyl ester 

hydrochloride (L-NAME), lipopolysaccharide (LPS), DOX, and sodium azide (NaN3) were 

purchased from Sigma-Aldrich Inc. (St. Louis, MO, USA). SB202190 

[4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole (SB), a selective inhibitor 

of p38 mitogen-activated protein kinase (MAPK) used as an autophagy inducer], CM-H2DCFDA, 

RPMI 1640 medium, fetal bovine serum (FBS), penicillin and streptomycin, and PBS were 

obtained from Invitrogen Inc. (Carlsbad, CA, USA). Rapamycin (RAP), an autophagy inducer, 
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and Hoechst 33342, a nucleus staining dye, were purchased from Enzo Life Sciences Inc. 

(Farmingdale, NY, USA). The polyvinylidene difluoride (PVDF) membrane was purchased from 

Millipore Inc. (Bedford, MA, USA). Primary monoclonal antibodies against human Bcl 2, Bax, 

Bad, caspase 9, cleaved caspase 3, microtubule-associated protein 1A/1B-light chain 3 (LC3)-I/II, 

beclin 1, nuclear factor-κB (NF-κB) p65, E-cadherin, zinc finger E-box binding homeobox 

(TCF-8/ZEB1), vimentin, β-catenin, snail, and phosphorylated (p-) NF-κB at Ser536, p38 

MAPK and p-p38 MAPK at Thr180/Tyr182 were purchased from Cell Signaling Technology Inc. 

(Beverly, MA, USA). The antibodies against human β-actin and histone 3 and NF-κB Inhibitor 

CAS 213546-53-3 (CAS) were purchased from Santa Cruz Biotechnology Inc. (Santa Cruz, CA, 

USA). Visualization was performed using BioRad system (Hercules, CA, USA) with 

electro-chemiluminescence substrate (Hudson, NH, USA).  

4.2.2 Cell Culture 

THP-1 derived macrophage cells were widely used to examine the immunotoxicity of 

nanoparticles[210, 211]. The THP-1 monocyte cell line obtained from American Type Culture 

Collection (Manassas, VA, USA) was cultured in RPMI1640 medium containing 10% 

non-heated-inactivated FBS and 0.5% penicillin and streptomycin in a humidified incubator of 5% 

CO2/95% air at 37 ℃. Cells were suspended in the culture medium. Upon reaching confluence, 

differentiation into macrophage-like cells was performed by adding 12.4 ng/ml PMA and then 

cells were incubated for 48 h before the further experiment.  
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4.2.3 Cell Viability and Membrane Integrity Assay 

PMA-induced macrophages from THP-1 cells were treated with various concentrations of 

GQDs (5, 10, 50, 100, and 500 µg/ml) for 24 h. Cell viability was determined by the MTT assay. 

In brief, the cells were treated with GQDs, 10 µL MTT (5 mg/ml) was added to each well and 

the cell were incubated for 4 h, then the culture medium was removed and 100 µL DMSO was 

added to dissolve formazan crystals. Absorbance was recorded at 560 nm for formazan and 670 

nm for background using the Synergy H4 hybrid multi-mode microplate reader (BioTek). The 

results were given as relative value to the control in percent. The membrane integrity was 

evaluated by testing the level of lactate dehydrogenase (LDH) using the CytoTox-ONE kit 

(Promega, Madison, WI, USA). PMA-activated macrophages were treated with different 

concentrations of GQDs over 48 h. The culture medium was collected and released LDH was 

measured by converting resazurin into fluorescent resorufin. Each experiment was performed 

three different times (i.e. on three different days) and each time it was run in triplicates. 

4.2.4 Measurement of Intracellular ROS Levels 

Intracellular ROS level was determined using a fluorescent dye (CM-H2DCFDA). Briefly, 

macrophages in 96-well plates were treated with GQDs at different concentrations over 72 h. 

The mean intensity of fluorescence of 2',7'-dichlorofluorescein (DCF) was determined using a 

Synergy H4 hybrid microplate reader upon 485 nm excitation and 525 nm for detection. The 

fluorescence was measured every 5 min for 45 min. The results were given as the relative value 
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to the control in percentage. Cell-free test has been done without any interference due to different 

excitation/emission between GQDs and DCF. LPS was used as the positive control in parallel 

experiments. Each experiment was performed three different times (i.e. on three different days) 

and each time it was run in triplicates. 

4.2.5 Determination of the Effect of GQDs on Cell Cycle Distribution 

The effect of GQDs on cell cycle distribution of activated macrophages was evaluated using 

PI as the DNA stain by flow cytometry as described previously[208].Briefly, macrophages were 

treated with GQDs at concentrations of 10, 50, 100, and 200µg/ml for 24 h. In separate 

experiments, THP-1 cells were treated with 100 µg/ml GQDs for 4, 8, 24, 48, and 72 h, 

respectively. Cells were trypsinized and then fixed with 70% ethanol at 4°C overnight. The cells 

were incubated with 50 µg/ml PI and ribonuclease at 37ºC in the dark for 30 min. A total number 

of 1 × 104 cells were subject to cell cycle analysis using a flow cytometer. Each experiment was 

performed three different times (i.e. on three different days) and each time it was run in 

triplicates. 

4.2.6 Quantification of Cellular Apoptosis and Autophagy by Flow Cytometry 

Apoptotic cells were detected by FITC Annexin V apoptosis kit (eBiosciences, San Diego, 

CA, USA) according to the manufacturer’s instruction. In brief, macrophages were incubated 

with different concentrations of GQDs and different time points. Cells were washed with PBS, 

centrifuged and re-suspended in 100 µL binding buffer containing 5 µL of Annexin V-FITC and 
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5 µL of PI. After 15 min incubation at 37 ºC in the dark, cells were analyzed using a flow 

cytometer. Autophagy was quantified by measuring the dye-stained autolysosomes in the cells 

using Cyto-ID autophagy detection kit (Enzo Life Sciences Inc., Farmingdale, NY, USA). After 

treatment with GQDs for different times, the THP-1 derived macrophages were washed with 

PBS and re-suspended in 100 µL assay buffer containing 5 µL green detection reagent. After 

incubation for 10 min at 37 °C, cells were washed with assay buffer and analyzed using flow 

cytometry. DOX was used as the positive control for induction of apoptosis in parallel 

experiments. In addition, Rap was used as the positive control for autophagy induction in parallel 

experiments. Each experiment was performed three different times (i.e. on three different days) 

and each time it was run in triplicates. 

4.2.7 Western Blotting Assay 

Cells were harvested and lysed with radioimmunoprecipitation assay (RIPA) lysis buffer 

(Pierce, Rockford, IL, USA) with protease inhibitor cocktail and centrifuged at 3,000 g for 10 

min at 4 °C. Proteins were resuspended in 4 × sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) sample loading buffer (Bioworld, Atlanta, GA, USA) and 

denatured at 95 ºC for 10 min. An aliquot of total protein (20 µg) was electrophoresed on 12% 

SDS-PAGE mini gels and transferred onto PVDF membranes. Membranes were blocked at room 

temperature with 5% bovine serum albumin in Tris-buffered saline Tween-20 (TBST) buffer and 

probed with targeted primary antibodies overnight at cold room and then blotted with the 
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respective secondary antibody. Visualization was performed using BioRad system (Hercules, CA, 

USA) with the electro-chemiluminescence substrate. Protein level was normalized to the 

matching densitometric value of internal control. Each experiment was performed three different 

times (i.e. on three different days) and each time it was run in triplicates. 

4.2.8 Total RNA Isolation and Quantitation by Real-Time Polymerase Chain Reaction 

(PCR) 

THP-1 derived macrophages were treated with GQDs for 6 h before RNA harvesting, 

Trizol reagent (Invitrogen, Carlsbad, CA, USA) was used to extracting total RNA. Reverse 

transcription of total RNA to single-stranded cDNA was performed using the iScript reverse 

transcriptase supplied with the iScript cDNA Synthesis Kit (Bio-Rad Laboratories, Hercules, CA, 

USA). Reverse transcription amplification was performed using a LightCycler thermal cycler 

system and quantitative real-time PCR with the use of FastStart Universal Probe Master (Roche 

Diagnostics Co., Indianapolis, IN, USA). Pro-inflammation probe sets for human tumor necrosis 

factor-α (TNF-α), interleukin (IL)-1β, IL-8, and glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) genes were purchased from Integrated DNA Technologies Inc. (Coralville, IA, USA). 

The relative amount of target mRNA was calculated by the comparative cycle threshold method 

with GAPDH as the internal reference and expressed as the percentage change relative to 

untreated controls. Quantification data were corrected for reaction efficiencies. LPS was used as 
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the positive control.  Each experiment was performed three different times (i.e. on three 

different days) and each time it was run in triplicates. 

4.2.9 Enzyme-linked Immunosorbent Assay (ELISA) 

The media levels of IL-8, and TNF-α after macrophage exposure to GQDs were determined 

by commercial ELISA Ready-SET-Go kits (eBioscience, San Diego, CA, USA) according to the 

manufacturer’s instruction. In brief, the 96-well ELISA plate was incubated with 100 µL/well of 

coating buffer with capture antibody overnight at 4°C. Then the plate was washed 3 times with 

washing buffer (PBS with 0.05% Tween-20) and blocked by the assay diluent for 1 h at room 

temperature. After washing three times, 100 µL of detectionELISA antibody was added to each 

well and incubated for 1 h at room temperature followed by 3 times of wash. The plates were 

then incubated for 15 min at room temperature with 100 µL/well substrate solution and stopped 

by adding 50 µL of stop solution (1 M H3PO4) to each well. The absorbance at 450 nm was 

obtained using a H4 hybrid microplate reader for the IL-8 and TNF-α expression level analysis. 

Cell-free test has been done without any interference due to different absorbance of GQDs and 

detection wavelength of the ELISA reactions. LPS was used as the positive control in parallel 

experiments. Each experiment was performed three different times (i.e. on three different days) 

and each time it was run in triplicates. 
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4.2.10 Statistical Analysis 

Statistical analysis was performed by Prism GraphPad software 6.0 (Chicago, IL, USA). All 

mean values are presented with the standard deviation. Treatment effects were analyzed using 

one-way analysis of variance (ANOVA). The differences between groups were tested by 

Tukey’s multiple range tests with p< 0.05 considered as statistically significant. 

4.3 Results and Discussion 

4.3.1 Uptake of GQDs by THP-1-derived macrophages 

The first question for the immunotoxicity of GQDs was whether the GQDs entered the 

macrophages or not. So the uptake of GQDs by macrophages was first examined by confocal 

microscopy. ThP-1 induced macrophages was incubated in the 8-well chamber and treated with 

GQDs for 1 hour. Bright field image of THP-1-derived macrophages was shown in  

 

Figure 4.1 (A), Hoechst 33342 staining of the nucleus and localization of GQDs in the 

cytosol of THP-1-derived macrophages are shown in (B) and (C). The strong green fluorescent 

signal of GQDs was obtained in cytosol after 50 µg/mL GQD treatment for 1h.  

 

Figure 4.1 (D) shows the merged image of nuclear staining and GQDs staining, which 

clearly showed that GQDs entered into the macrophages and located in the cytosol.  
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Figure 4.1 Uptake of GQDs (50 µg/ml, 1h) by THP-1-derived macrophages by confocal 
microscopy at a magnificationof 60 X. (A: Bright field image of THP-1-derived macrophages, B: 
Hoechst 33342 staining for nucleus, C: Localization of GQDs in cytosol of THP-1-derived 
macrophages, D: Merge of B and C). 

4.3.2 Effect of GQDs on Cellular Viability and Membrane Integrity 

Since GQDs definitely entered into the macrophages, the effect of GQDs on macrophages 

cellular viability was then examined using the MTT assay. THP-1 cells were treated with 12.4 

ng/mL PMA and differentiated into macrophages. Subsequently, the macrophages were incubated 

with GQDs at concentrations of 1, 5, 10, 50, 100, and 200 µg/mL for 24 h, and the cell viability 

was found to be 103.6%, 106.8%, 98.3%, 95.8%, 93.8%, and 82.4%, respectively (Figure 4.2A). 

These GQDs concentrations were chosen on the basis of previous studies related to their 

cytotoxicity and bioactivity[195, 196, 201, 208]. Incubation of macrophages with GQDs for 48 h 

led to a lower cell viability than that of 24 h treatment. The cell viability was 95.6%, 92.7%, 92.2%, 
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87.3%, 76.1%, and 62.2%, respectively (Figure 4.2A). The IC50 value for GQDs was greater than 

2000 and 400 µg/ml for 24 and 48 h, respectively.  

To further evaluate the cytotoxic effect of GQDs on macrophages, the plasma membrane 

integrity was examined by measuring the extracellular level of LDH. Macrophages were treated 

with various concentrations of GQDs ranging from 1 to 200 µg/ml for 6 and 24 h. In comparison to 

the control group, there was no significant alteration in the extracellular LDH level (Figure 4.2B), 

whereas incubation of macrophages with lysis buffer, as a positive control, resulted in a 2.0-fold 

increase in the extracellular LDH level. These data demonstrated that GQDs had a low to moderate 

cytotoxicity towards THP-1-derived macrophages in a concentration-dependent manner.  

Apart from the observations of favorable physicochemical properties of the as-synthesized 

GQDs, their immunotoxicity was evaluated in the present study as well. There was only a slight 

cytotoxicity of GQDs observed at low concentrations in macrophages with IC50 value greater 

than 2000 and 400 µg/ml for 24 and 48 h based on the MTT results. Moreover, GQDs did not 

damage the plasma membrane as shown in the LDH leakage assay. These results presented a 

favorable biological feature of GQDs with low cytotoxicity.  
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Figure 4.2  (A) Cell viability of THP-1-derived macrophages determined by the MTT assay in 
THP-1-derived macrophages. (B) Effects of GQDs on the plasma membrane integrity in 
THP-1-derived macrophages determined by LDH leakage. Data are presented as the mean ± SD 
from three independent experiments. *, # p < 0.05; by one-way ANOVA. 
 

4.3.3 Effect of GQDs on Cell Cycle Distribution of Human Macrophages 

In order to further determine the effect of GQDs on cell growth, the cell cycle distribution of 

macrophages was tested. The cells were treated with 100 µg/mL GQDs over 72 h. An increasing 

percentage of G1-delayed cells was found. A significant G1 phase arrest was observed at 72 h as 

shown in Figure 4.3(A). In separate experiments, incubation of cells with GQDs at 

concentrations of 10, 50, 100, and 200 µg/mL for 24 h caused a slight alteration in the 

percentage of cells in G1, G2/M, and S phases as shown in Figure 4.3(B). Only 200 µg/mL GQD 

treatment showed a statistical significance in G1 phase delay. Such results suggested that long 

time (72 h) or high concentration (200 µg/mL) GQD treatment had a significant effect on 

macrophage cell cycle distribution. 
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Figure 4.3 (A) Time-course and (B) dose–response effects of GQDs on the cell cycle in 
THP-1-derived macrophages determined by flow cytometry. Bar graphs showed the effects of 
GQDs on the cell cycle distribution of THP-1-derived macrophages. Data are presented as the 
mean ± SD from three independent experiments. * p < 0.05; by one-way ANOVA. 
 

4.3.4 Effect of GQDs-induced Apoptosis In Macrophages 

To further explore the mechanism of cytotoxic effect of GQDs on macrophages, the 

effect of GQDs on cellular apoptosis was quantified by flow cytometry analysis. The number of 

apoptotic cells without GQD treatment was 3-5.0% (early + late apoptosis) (Figure 4.4A-B). 

Macrophages exposed to GQDs at 10, 50, 100, and 200 µg/mL for 24 h caused slightly 

dose-dependent increase in the proportion of total apoptosis by 6.6%, 7.0%, 9.3%, and 14.4%, 

respectively (Figure 4.4A). Treatment of the cells with 200 µg/mL GQDs significantly increased 

the total apoptosis 2.9-fold and DOX (as a positive control) increased total apoptosis 7.9-fold.  

When the cells were treated with 100 µg/mL GQDs for 2, 4, or 8 h, there was no significant 

change in the apoptosis of the macrophages. When the incubation time was increased to 24 or 48 

h, a significant increase in apoptosis was observed. Notably, the 48-h treatment increased the 

apoptosis 4.3-fold in macrophages (Figure 4.4B). 
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Figure 4.4 Effects of GQDs on the apoptosis of THP-1-derived macrophages determined by flow 
cytometry. (A) Dose–response and (B) time-course effect of GQDs on apoptosis in THP-1-derived 
macrophages by flow cytometry. *, # p < 0.05; by one-way ANOVA. 

 

To further elucidate the underlying mechanism for the apoptosis-inducing effect of GQDs in 

macrophages, we investigated the effect of GQDs on mitochondria-related cell death pathway 

with a focus on Bcl-2, Bax, Bad, caspase 9, and caspase 3. As shown in Figure 4.5, treatment of 

the cells with GQDs at 50, 100, and 200 µg/mL decreased the expression of anti-apoptosis 

protein Bcl-2 by 4%, 23%, and 54%, respectively, while GQDs increased the expression levels 

of Bax and Bad.  The expression level of Bad was increased 1.1- and 1.5-fold with the 

treatment of GQDs at concentrations of 100, and 200 µg/mL, respectively, and 1.8-, 2.2-, 2.9-, 

and 1.9-fold increase in Bax level with GQDs at concentrations of 10, 50, 100, and 200 µg/mL, 

respectively. Importantly, the ratio of Bcl-2 over Bax was significantly decreased by the 

exposure of GQDs at concentrations of 10, 50, 100, and 200 µg/mL. Furthermore, GQDs 

increased the levels of cleaved caspase 3 and cleaved caspase 9 in macrophages, while total 
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caspase 9 expression level was decreased. Taken together, GQDs induced cell apoptosis via the 

mitochondria-related pathway involving the activation of caspase families. 

Figure 4.5 Representative Western blots of apoptosis-associated proteins including Bcl-2, Bax, 
Bad, caspase 9, cleaved caspase 9 and cleaved caspase 3. The bar graphs show the blot intensity 
mean ± SD. Data are presented as the mean ± SD. *p < 0.05; by one-way ANOVA. 
 

4.3.5 GQDs induce autophagy in macrophages 

Since we have observed the apoptotic effect of GQDs on macrophages, the autophagic effect 

of GQDs on macrophages was tested. As shown in Figure 4.6, there was a significant increase in 

autophagy in concentration- and time-dependent manners. The flow cytometry analysis 
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suggested that GQDs increased the autophagy 2.0-, 4.2-, 4.6-, and 5.1-fold at 10, 50, 100, and 

200 µg/mL, respectively (Figure 4.6A). When macrophages were exposed to 100 µg/mL GQDs 

for 8, 1,2, 24 and 48 h, the number of autophagic cells were increased 2.7-, 4.3-, 5.1-, 5.8-, and 

6.4-fold (p< 0.05), respectively, compared to the control (Figure 4.6B). 

I further examined the effect of GQDs on the expression of LC3-I/II and beclin 1 in 

macrophages. Incubation of cells with 10, 50, 100, and 200 µg/mL GQDs for 24 h resulted in 

1.5-, 1.8-, 2.2-, and 2.3-fold increase in the expression of beclin 1, respectively. For LC3-I and II, 

GQDs increased the expression level for both LC3 forms (p> 0.05), however, the ratio of LC3-II 

over LC3-I was significantly increased 5.8- and 5.4-fold at 100 and 200 µg/mL GQD, 

respectively (Figure 4.7).  

 

 
Figure 4.6 Effects of GQDs on the autophagy of THP-1-derived macrophages determined by flow 
cytometry and the underlying mechanisms. (A) Confocal microscopic images of autophagy in 
THP-1-derived macrophages treated with GQDs for 24 h. (B) Time-course and dose–response 
effect of GQDs on autophagy.Data are presented as the mean ± SD. p < 0.05; by one-way 
ANOVA. 
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Figure 4.7 Representative Western blots of autophagy-associated proteins including LC3-I, 
LC3-II, and beclin 1. Bar graphs of the Western blot results. Data are presented as the 
mean ± SD. p < 0.05; by one-way ANOVA. 
 

4.3.6 GQDs Increase Intracellular ROS Generation In Macrophages 

ROS plays an important role in the inflammatory response and many other important 

biological processes and has been proposed as a main contributing factor to nano-toxicity in 

preclinical experimental models[212-214]. To further evaluate the immunotoxic effect of GQDs 

in macrophages, the effect of GQDs on ROS generation was examined. Macrophages were 

treated with GQDs at concentrations of 10, 50, 100, and 200 µg/mL for 24 h. There was a 

significant increase in the intracellular level of ROS. As shown Figure 4. 8, GQDs 

concentration-dependently enhanced the ROS generation, with a 1.4-, 1.6-, and 1.6-fold rise in 
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the level of ROS at 50, 100, and 200 µg/mL GQDs, respectively (p< 0.05). In addition, LPS was 

used at the positive control to induce ROS generation in macrophages. The exposure of 

macrophages to 30 ng/mL LPS led to a 3.2-fold increase in the ROS level (Figure 4. 8A). In 

separate experiments, macrophages were treated with GQDs at 50 µg/mL for 1, 2, 4, 6, 8, 12, 24, 

48, or 72 h. There was a significant elevation in ROS generation when cells were treated for 1 to 

48 h (Figure 4. 8B). However, there was no significant effect of GQDs on ROS generation after 

cells were treated for 72 h (Figure 4. 8B). 

 

 
Figure 4. 8 Effects of GQDs on the ROS generation in THP-1-derived macrophages. (A) Effect 
on ROS production in THP-derived macrophages treated with GQDs at different concentrations 
for 24 h. (B) Effect on ROS production in THP-derived macrophages treated with 50 µg/mL 
GQDs for different exposure times. (C) Determination of the source of GQDs-induced ROS 
generation in THP-1-derived macrophages. Data are presented as the mean ± SD from three 
independent experiments. *p < 0.05; by one-way ANOVA. 

 

Moreover, a number of intracellular sources contribute to ROS generation, including 

NADPH oxidase, nitric oxide (NO) synthase, xanthine oxidase[215]. Thus, several 
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pharmacological agents were used in order to elicit the source of GQD-induced ROS generation.  

APO (an inhibitor of phagocytic NADPH oxidase), DPI (an inhibitor of flavoprotein-dependent 

oxidase), L-NAME (an inhibitor of NO synthase), or NAC (an antioxidant and a ROS scavenger) 

was separately added 30 minutes before the exposure to 50 µg/mL GQDs. APO at 100 µM, 5 µM 

DPI, 500 µM L-NAME, and 100 µM NAC decreased 40%, 47%, 21%, and 35% of the ROS 

production in macrophages incubated with 50 µg/mL GQDs (Figure 4.9), respectively.  These 

data suggested that GQD-induced ROS production was mainly mediated by NADPH oxidase and 

with a lesser contribution by NO synthase. These findings indicated that GQDs induced ROS 

production in concentration- and time-dependent manners. GQD-induced ROS generation was 

associated with several oxidases, including NADPH oxidase and NO synthase. 

 

Figure 4.9 Determination of the source of GQDs-induced ROS generation in THP-1-derived 
macrophages. Data are presented as the mean ± SD from three independent experiments. *p < 
0.05; by one-way ANOVA. 
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4.3.7 GQDs Trigger Cytokine Production in Activated Macrophages 

The effect of GQDs on the production of pro-inflammatory cytokines is one of the major 

possible perturbations of the immune response. The expression of cytokines was measured at 

transcriptional and posttranscriptional levels by RT-PCR and ELISA, respectively. As seen in 

Figure 4.10A, there was a similar gene expression profile of TNF-α, IL-1β, and IL-8 after 

macrophages were treated with GQDs for 6 and 24 h. Exposure of cells to 10 and 50 µg/mL 

GQDs for 6 h increased 1.6- and1.3-fold in the expression of IL-1β, and 1.4-, and 1.7-fold in the 

expression of IL-8, respectively (p< 0.05). When the incubation time was increased to 24 h, there 

was a 1.6- and 1.3-fold increase in the expression of IL-1β, and 1.4-, and 1.7-fold in the 

expression of IL-8 after cells were treated with 10 and 50 µg/mL GQDs, respectively (p< 0.05). 

There was only a slight increase in the expression of TNF-α with the treatment of 10 and 50 

µg/mL GQDs for 6 and 24 h. However, incubation of cells with 100 and 200 µg/mL GQDs 

significantly decreased the expression of TNF-α, IL-1β, and IL-8.  

 
Figure 4.10 Effects of GQDs on the mRNA levels of TNF-α, IL-1β, and IL-8 in THP-1-derived 
macrophages for (A) 6 h and (B) 24 h. Data are presented as the mean ± SD from three 
independent experiments. *, #, Δ p < 0.05; by one-way ANOVA. 
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The effect of GODs on the protein level of TNF-α and IL-8 was examined as well. The 

results showed that GQDs increased 7.5- and 7.3-fold in TNF-α and 2.2- and 2.2-fold in IL-8 at 

concentrations of 10 and 50 µg/mL, respectively (Figure 4.11p< 0.05). In separate experiments, 

macrophages were treated with 50 µg/mL GQDs over 48 h. There was a 1.6-, 1.6-, and 1.5-fold 

increase in the expression level of IL-8 after cells were treated with GQDs for 12, 24, and 48 h, 

respectively (p< 0.05). Similarly, treating cells with GQDs for 12, 24, and 48 h resulted in a 2.5-, 

2.5-, and 2.7-fold increase in the expression of TNF-α, respectively (p< 0.05). LPS at 30 ng/mL 

was used as the positive control of cytokine production, which increased the IL-8 and TNF-ɑ 

level by 3.1- and 11.3-fold, respectively.  In addition, SB202190, a p38 MAPK selective 

chemical inhibitor, abolished the inducing effect of GQDS on cytokine expression in 

macrophages. These results indicated that GQDs increased the generation of cytokines involving 

p38 MAPK-mediated signaling pathway.  
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Figure 4.11 Dose, time and p38 MAPK inhibitor effects of GQDs exposure on the excretion of (A) 
TNF (B) IL-8 in THP-1-derived macrophages at protein levels. Data are presented as the 
mean ± SD from three independent experiments. *, #, Δ p < 0.05; by one-way ANOVA. 

 

4.3.8 Effect of GQDs on Epithelial-mesenchymal Transition (EMT) of Macrophages 

To further understand the mechanisms for the immune-modulating effects of GQDs, we studied 

the effect of GQDs on the expression levels of several key EMT markers in human macrophages. 

When the cells were treated with GQDs at 10, 50, 100, and 200 µg/mL, the expression of 

E-cadherin was only slightly reduced while the expression of β-catenin was slightly increased 

(Figure 4.12). Although the expression of snail and TCF-8 was reduced by 67% and 46% when the 

cells were treated with 200 µg/mL, respectively, the differences did not achieve statistical 

significance. 
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Figure 4.12 Effects of GQDs on the expression levels of selected markers of EMT in THP-1 
derived macrophages. Cells were treated with GQDs at 10, 50, 100, and 200 µg/mL for 24 h and 
the cellular protein levels of E-cadherin, vimentin, β-catenin, TCF-8, and snail were determined 
using Western blotting analysis. Representative blots of the EMT markers and bar graphs showing 
the effect of GQDs on the expression of EMT markers. No statistical significance was observed. 
Data are presented as the mean ± SD from three independent experiments. * p < 0.05; by one-way 
ANOVA. 
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4.3.9 GQDs Upregulate p38 MAPK and NF-κB Signaling Pathways in Macrophages 

In order to further examine the regulatory effect of GQDs on inflammatory response, the 

expression and phosphorylation level of p38 MAPK and NF-κB were determined. p38   MAPK 

regulates cellular responses to cytokines and stress and thus controls cell differentiation, cell death, 

cell migration, and invasion[216]. In contrast to the control group, there were 4.6- and 3.3-fold 

increases in the phosphorylation level of p38 MAPK with the treatment of GQDs at 100 and 200 

µg/mL, respectively (p< 0.05), and there was no significant alteration in the expression level of 

total p38 MAPK (Figure 4. 13). 

To confirm the effect of GQDs on macrophages via upregulating p38 MAPK and NF-κB 

expression, the inhibitors of these two proteins were utilized.  The p38 MAPK selective 

chemical inhibitor SB202190 (SB, 20 µM) or NF-κB inhibitor CAS 213546-53-3 (CAS, 10 

µg/mL) was incubated with THP-1-derived macrophages for 30 min before 100 µg/mL GQDs 

was added to trigger the apoptosis and autophagy. The results showed that CAS significantly 

decreased the total death of THP-1-derived macrophages induced by GQDs, while SB did not 

significantly affect it (Figure 4. 14A-B). This implied that GQD-induced apoptosis was regulated 

via the activation of NF-κB signal pathway.  
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Figure 4. 13 Effects of GQDs on the expression of nuclear phosphorylated p65 and cytosolic p65 
and key proteins regulated by NF-κB in THP-1-derived macrophages. (A) Effects of GQDs on the 
expression of phosphorylated p38MAPK, cytosolic NF-κB (p65) in THP-1-derived macrophages. 
(B) Effects of GQDs on the expression of nuclear phosphorylated NF-κB p65 in THP-1-derived 
macrophages. The bar graphs show the above blot intensity mean ± SD. *p < 0.05; by one-way 
ANOVA. 

 

NaN3 at 10 mM was used to deplete ATP, thus blocking the endocytosis and 

phagocytosis[217, 218]. GQD-induced autophagic effect on THP-1-derived macrophages was 

measured after p38 MAPK, NF-κB, and phagocytosis were inhibited. Rap, an mTOR inhibitor, 

was used as a known inducer of autophagy. 100 nM Rap increased the autophagy of 

THP-1-derived macrophages 7.14-fold compared to the untreated group. SB, CAS, and NaN3 

significantly decreased GQD-induced autophagy by34%, 54%, and 57%, respectively, compared 

to the group treated with 100 µg/ml GQDs only (Figure 4. 14C). This indicated that the 
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GQD-induced autophagy of THP-1-derived macrophages was significantly via the activation of 

p38MAPK, NF-κB pathway, and phagocytosis process. 

NaN3, the inhibitor of the endocytosis and phagocytosis, significantly decreased the ROS 

generation. This suggested that GQDs were internalized into macrophages in the first step, and 

then triggered the ROS production. Furthermore, both SB and CAS did not significantly affect 

the ROS production in THP-1-derived macrophages exposed to 50 µg/ml GQDs for 24 h. No 

significant decrease of intracellular ROS generation was found after p38 MAPK and NF-κB 

were inhibited. This result showed that ROS generation induced by GQDs did not require the 

activation of p38 MAPK and NF-κB (Figure 4. 14 D).  Combined with findings from published 

studies, we concluded that ROS production did not locate downstream of the p38 MAPK and 

NF-κB signal pathways[219, 220].  
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Figure 4. 14 Effect of p38 MAPK inhibitor (SB: SB202190) or NF-κB (CAS: CAS 213546-53-3) 
inhibitor on GQDs-induced (A) apoptosis, (B) total cell death, (C) autophagy, and (D) ROS 
generation. The bar graphs show the above blot intensity mean ± SD. *p < 0.05; by one-way 
ANOVA. 

 

Through comprehensive analysis, all the results above suggested that GQDs triggered the 

inflammatory response, apoptosis, and autophagy via the regulation of p38 MAPK and NF-κB 

signaling pathway.  

4.4 Conclusion 

In summary, I successfully evaluated immunotoxicity of GQDs in human macrophages. I 

have also demonstrated that GQDs could induce the inflammatory response, apoptosis, and 

autophagy in human macrophages via p38 MAPK and NF-κB signaling pathways. This study has 
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provided new insights into how GQDs interact with the biological systems which must be taken 

into account when GQDs are used as novel theranostics. Further studies are needed to elucidate 

the underlying mechanisms for the size- and surface area- effects of GQDs on the immune 

system and the safety implications.   

  



www.manaraa.com

 88 

 
 
 
 

CHAPTER 5: DISCUSSION2 

 

In recent decades, nanomedicine has been perceived as a promising field for disease therapy, 

diagnosis, and control of the biological system, so it has attracted increasing attention[221, 222]. 

GQDs, one of the most promising alternative biomaterials for nanomedicine, are widely studied 

and applied due to their unique properties. In this dissertation, I described the design and 

investigation of  a novel GQDs DDS for ovarian cancer therapy. The translation of basic 

science to clinical application is an emerging area, which aims to translate the nanomedicine 

from bench to bedside. This dissertation has laid the foundation to develop a novel GQDs based 

DDS to enhance the targeted therapeutic activity for ovarian cancer.  

First, to establish a facile method to the synthesize the GQDs is a big challenge, as well as a 

prerequisite. From this point of view, a novel one-step synthesis method of GQDs was 

established and introduced in chapter 2. The study results demonstrate that GQDs with strong 

florescent illumination and excellent water solubility were directly fabricated from graphite by a 

hydrothermal reaction. In comparison to previous studies, the basic analyses including TEM, 

HRTEM, AFM, XRD, FTIR, Raman spectrum, depicted the structure of the GQDs. The sizes of 

the synthesized GQDs were in a narrow range from 1.5 nm to 4 nm with a single- or bi-layer. 

                                                
2Part of this section is published as reference 197. Ibid. 
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Functional groups, such C-O and C=O, were introduced to the edge of the GQDs, enabling the 

conjugation with targeting ligands or therapeutic components for further biomedical applications. 

The one-step GQDs synthesis approach used in this study was superior to conventional ones. 

Moreover, the fluorescent spectra of GQDs exhibited excitation-dependent emission behavior. 

GQDs in aqueous solution could produce bright green fluorescence upon excitation at 365 nm, 

which could be applied for bioimaging application. Their morphologic and optical properties are 

consistent with previous studies[223, 224]. 

Moreover, the conjugation of GQDs with targeting ligand and chemotherapeutic drug is the 

foundation of the dissertation. FA is a specified targeting ligand to ovarian cancer overexpressed 

receptor, FR-α. The conjugation of FA and GQDs is based on the EDC-NHS crosslinking 

reaction (Figure 5.1). The successful conjugation of FA to GQDs was confirmed by FTIR and 

UV absorption spectroscopies. The properties of the GQDs-FA were in agreement with previous 

studies[117, 176, 225, 226]. DOX, a FDA approved second-line drug for metastatic ovarian 

cancer, was attached on the GQDs sheet via π-π stacking. DOX has an UV absorbance maximum 

at 480 nm and a strong red emission at 560-590 nm with the 480 nm excitation. The successful 

loading of DOX on GQDs-FA was in agreement with the work of other groups [175, 176, 199, 

224]. The UV-Vis absorption spectrum showed an obvious peak at 480 nm. However, the red 

emission of DOX was quenched after loading to GQDs-FA. Both fluorescent spectroscopy and 

confocal microscopy could detect the strong signal of GQDs with the absence of fluorescent 

signal from DOX. Several possible explanations of the fluorescence quenching involve static 
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quenching, exciplex, Dexter electron transfer, and Förster resonance energy transfer[227-229]. 

There are few studies on the DOX fluorescent quenching effect, but some groups assumed that 

fluorescence of DOX may be self-quenched at high concentrations or in collision with water 

molecules[230]. Although the underlying mechanism of DOX quenching in this study is unclear 

at the present, it is an interesting topic and hopefully can be solved by optical physicists. 

 

 
Figure 5.1 NHS plus EDC (carbodiimide) crosslinking reaction scheme for GQDs-FA 
conjugation. Reprint with permission from manufacturer (Thermo Fisher Scientific). 

 

Although DOX has been proved to have strong antitumor activity in a wide variety of 

malignancies, including ovaries, its usage is limited in clinical cases due to its severe cardiac 

toxicity[189, 231].  The major concern of using DOX is its side effect of causing chronic 

cardiomyopathy. Using DDS to deliver DOX is an alternative choice, but current commercial 
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product DOXIL still has some problems including acute hypersensitivity reaction and 

non-specificity[232-234]. Therefore, GQDs-FA-DOX in this dissertation research was a potent 

DDS for FR overexpressed ovarian cancer. The anti-cancer effect of the GQDs-FA-DOX DDS 

was validated in chapter 3. The results presented in this chapter are very encouraging. Not only 

the targeted DDS specifically delivers DOX into the tumor site, which enhances the ovarian 

cancer cells uptake, promotes ROS generation, and induces apoptosis, but also the DDS has 

limited toxicity to normal ovarian epithelial cells. The targeting feature of the GQDs-FA-DOX is 

determined by FA, which actively binds to the FR. Both confocal microscopy (Figure 3.2) and 

flow cytometry results (Figure 3.3) indicate that GQDs-FA-DOX was efficiently targeted to the 

FR overexpressed ovarian tumor cells OVCAR3. Moreover, the competitive experiment of FA 

confirms the FR-mediated uptake mechanism of the GQDs-FA-DOX (Figure 3.4). The 

fluorescent intensity of the cells pre-treated with FA decrease by 70% indicating that fewer 

GQDs-FA-DOX entered per cell. However, 72% of the cells still uptake GQDs-FA-DOX if they 

pre-treated with FA. The possible explanation of this phenomenon may be due to that the binding 

of the FA to FR is a dynamic process. Therefore, pre-treatment with FA to FR overexpressed 

cells could not fully inhibit the FR. The colony assay and apoptosis assay demonstrate the 

anti-tumor effect of the GQDs-FA-DOX to FR overexpressed ovarian tumor cells. The potential 

effect of the drug delivery vehicle itself is excluded since GQDs cause no significant effect on 

colony formation and cell apoptosis. The inhibition effect of FA to GQDs-FA-DOX in FR 

overexpressed is obvious that no significant change in the size and numbers of the 
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formed-colonies. ROS generation is one of the well-known mechanisms of DOX’s therapeutic 

effect. Intracellular ROS interacts with macromolecules, such as including DNA and functional 

proteins, leading to the cellular dysfunction and signal transductions disruption [193, 235]. 

Consistent with that idea, the findings in the ROS experiment shows that GQD-FA-DOX 

strongly induced ROS generation in FR overexpressed cells, while no significant effect in FR 

negative cells (Figure 3.7). Again, the vehicle itself, GQDs, results in no change in ROS 

generation. EMT is a key step of cancer invasion by losing their epithelial morphology and 

undergoing migratory behavior. Therefore, this DDS improves the therapeutic activity to the 

tumor site, while minimizes the toxic effect to normal ovarian epithelial cells.  

Last but not least, with the growing investigation of GQDs for biomedical applications, their 

environmental and biologic toxic effects have become a major concern. Thus, it is important to 

decipher the toxicological profiles of GQDs. Although there were a few studies on their 

toxicity/biocompatibility[195, 196, 201], study on the effect of GQDs on the immune system was 

still lacking. The immune system protects the host by responding to the external and internal 

stimuli. The potential immunotoxicity of nanoparticles may disturb the immune system, resulting 

in undesirable suppression or overstimulation. The phagocytic cells (e.g., macrophages) of the 

immune system are the first safeguard to nanoparticles in most circumstance. The interactions 

between nanoparticles and these cells may promote inflammatory process or suppress the body 

immunity. Considering the important roles of on immune system, it is of great significance to 
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investigate the possible inhibitory or enhancing response of the immune-related cells to the 

exposure of GQDs.  

There was only a slight cytotoxicity of GQDs observed at low concentrations in 

macrophages with an IC50 value greater than 2000 and 400 µg/mL for 24 and 48 h based on the 

MTT results. Moreover, GQDs did not damage the plasma membrane as shown in the LDH 

leakage assay. These results presented a favorable biological feature of GQDs with low 

cytotoxicity. The results showed a significant decrease in mitochondrial dehydrogenase activity 

at high concentration of GQDs in macrophages. A possible explanation might be associated with 

ROS-induced cell death[236]. Intracellular ROS interact with macromolecules including DNA 

and functional proteins, rendering the disruption of signal transductions and cellular dysfunction. 

Consequently, enhanced ROS generation causes cell death. Indeed, my findings showed that 

GQDs significantly increased the intracellular ROS generation, apoptosis, and autophagy in 

macrophages. Apoptosis and autophagy are two dominant cell programmed cell death and 

interplay with each other[237]. Apoptosis is initiated by the release of cytochrome c resulting in 

the imbalance between pro-apoptotic and anti-apoptotic proteins and executed by caspase 

families through two main pathways, including the extrinsic death receptor pathway and the 

intrinsic mitochondrial/cytochrome c-mediated pathway[238, 239]. In this current study, GQDs 

decreased the expression level of Bcl-2 and increased the expression level of Bax and Bad, 

leading to a decline in the ratio of Bcl-2 over Bax. Moreover, my results showed that GQDs 

increased the expression level of cleaved caspase 3 and caspase 9 which eventually resulted in 
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cell death. On the other hand, autophagy has multifaceted roles in the maintenance of cellular 

homeostatic function and it can counteract the apoptotic cell death[237]. In my study, GQDs 

showed a significant inducing effect on autophagy in macrophages while showing little apoptotic 

effect on macrophages, especially at low concentrations. 

Therefore, it is highly likely that autophagy was an innate defending mechanism utilized by 

macrophages against GQDs. Beclin 1 and LC3 were two key proteins in the process of 

autophagy pathway and the conversion of cytosolic form LC3-I (18 kD) to membrane-bound 

lapidated form of LC3-II (16 kD) was a common indicator of autophagy[240]. Both beclin 1 

expression and LC3-II/LC3-I conversion ratio were enhanced, confirming the accumulation of 

autophagosomes in macrophages exposed to GQDs. When phagocytosis and autophagy occur in 

macrophages, it requires the internalization of GQDs. As shown in Figure 4. 14, the inhibitory 

effect of NaN3, which is a known inhibitor of endocytosis and phagocytosis, was observed. 

These results indicated that the inhibition of internalization of GQD particles reduced both 

autophagy and ROS production. This suggested that GQD-induced immunotoxicity involved 

internalizing GQD particles followed by ROS generation production and triggering programmed 

cell death. 

The inflammatory response is critical for immune system responding to stimuli by producing 

a variety of pro-inflammatory cytokines, including TNF-α, IL-1, and IL-8. They have an 

important role in the regulation of various cellular functions including cell proliferation, 

apoptosis, and autophagy[241]. In the present study, we found an increasing effect of GQDs on 
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the expression of TNF-α, IL-1, and IL-8 at low concentrations, whereas a high concentration of 

GQDs suppressed the expression of TNF-α, IL-1, and IL-8 in macrophages. Furthermore, we 

found that SB202190, a p38 MAPK selective chemical inhibitor, abolished the effect of GQDs 

on the generation of cytokines. This indicated that the regulatory effect of the inflammatory 

response may involve p38 MAPK-mediated signaling pathway. Indeed, our findings showed that 

GQDs significantly increased the phosphorylation of p38 MAPK. Moreover, we observed that 

GQDs promoted the nuclear translocation of NF-κB and increased the phosphorylation of p65. 

NF-κB is a critical transcription factor involved in various cellular responses to stimuli such as 

cytokines[242-245]. In particular, NF-κB has a pivotal role in the regulation of inflammatory and 

immune responses by interplaying with various signaling pathways, which regulate the 

intracellular and extracellular levels of pro-inflammatory cytokines, such as TNF-α, IL-1β, and 

IL-8. In addition to the immune response, NF-κB also plays an important role in a variety of 

physiological and pathological processes. The activation of NF-κB can either promote or inhibit 

the cell survival depending on the cell type and the stimuli[236-239]. In our case, NF-κB was 

possibly involved in GQD-induced apoptotic cell death. CAS 213546-53-3, a selective chemical 

inhibitor of NF-κB phosphorylation and translocation, significantly decreased the GQD-induced 

cell apoptosis. Moreover, both p38 MAPK and NF-κB pathways were involved in GQD-induced 

autophagy of macrophages, although they did not have any effect on ROS production induced by 

GQDs. Taken together, the effect of GQDs on inflammatory response, apoptosis, and autophagy 

might be ascribed to the modulation of p38 MAPK and NF-κB mediated signaling pathways. 
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In general, although GQDs exhibited favorable biocompatibility, they still moderately 

triggered immune responses and programmed cell death with the involvement of p38 MAPK and 

NF-κB signaling pathways ( 

Figure 5. 2). Chemical modification or change of the synthesis approach of GQDs may help 

avoid the undesirable stimulation of the immune system. On the other hand, GQDs may be 

applied as an adjunct to develop new vaccines. 

 

 
Figure 5. 2 Schematic diagram of signaling pathways involved in GQDs-induced immunotoxicity 
in human macrophages. 

 

To further study and optimize the GQDs-based DDS, the following recommendations are 

proposed in attempt to, hopefully, improve the translational science of the nanomedicine to 

ovarian cancer. First of all, NIR-trigger controlled releasing and photothermal therapy of the 

GQDs-based DDS is an emerging topic. Previous studies demonstrated that GQDs possesses 
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strong NIR absorbance and generates heat after triggered by laser. On one hand, the generated 

heat could disrupt the π− π stacking between GQDs and drug, rendering to a controlled releasing 

of the drug. On the other hand, the generated heat can also provide a hyperthermia environment 

in cells, making cells more fragile to the drug and realize the combination of photothermal 

therapy and chemotherapy. Moreover, biodistribution, degradation, pharmacokinetics, and 

pharmacodynamics of nanomaterials the remains a major challenge in translational science. 

Luckily, GQDs presents strong fluorescence and enables real-time tracking in vivo. Therefore, it 

is possible to investigate pharmacology profile of this GQDs-based DDS, as well as its 

anti-cancer effect in animal studies. Finally, large-scale synthesis and quality control of the DDS 

are always a key point to translate the research findings from bench to bedside.  
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